高泽海, 刘洋, 陈杰, 储墨林, 张研, 李婵. 基于增强天牛须搜索算法的专色配方预测方法[J]. 西北工业大学学报
GAO Zehai, LIU Yang, CHEN Jie, CHU Molin, ZHANG Yan, LI Chan. Enhanced beetle antennae search algorithm for spot color prediction[J]. Northwestern polytechnical university

高泽海1, 刘洋1, 陈杰2, 储墨林1, 张研3, 李婵4
1. 西安理工大学 水利水电学院, 陕西 西安 710048;
2. 西北工业大学 民航学院, 陕西 西安 710072;
3. 西安理工大学 机械与精密仪器工程学院, 陕西 西安 710048;
4. 深圳职业技术学院 传播工程学院, 广东 深圳 518000
关键词:    吸光度    专色    最小二乘法    天牛须搜索算法   
Enhanced beetle antennae search algorithm for spot color prediction
GAO Zehai1, LIU Yang1, CHEN Jie2, CHU Molin1, ZHANG Yan3, LI Chan4
1. School of Water Resources and Hydropower, Xi'an University of Technology, Xi'an 710048, China;
2. School of Civil Aviation, Northwestern Polytechnical University, Xi'an 710072, China;
3. School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China;
4. School of Communication Engineering, Shenzhen Polytechnic, Shenzhen 518000, China
Color prediction is one of the most important techniques in the field of packaging and printing. A new prediction method combined least squares and enhanced beetle antennae search algorithm is proposed to obtain precise special color formula by using absorption spectrum. This paper focuses on the spectral model of high light transmittance PET films and constructs the absorption spectral mechanism model for color prediction. Secondly, an enhanced beetle antennae search algorithm with direction correction term and mutation probability term is proposed to improve the searching performance and increase the convergence rate. Thirdly, for promoting the search efficiency, the least squares method is used to optimize the color gamut space and reduce the dimension of primary colors. Finally, the enhanced beetle antennae search algorithm is applied to solve color formula and predict spot color. The effectiveness and superiority of the proposed method are validated in comparison with basic beetle antennae search, particle swarm optimization and ant colony optimization. The results illustrate that the proposed method is superior to the compared methods. The color differences between the original spot color and the predicted spot color are less than 3, in which 90% color differences results are less than 1, 40% color differences results are less than 0.1. All the results confirm that the proposed method has significant effect on spot color prediction and can predict the special color formula accurately.
Key words:    absorbance    spot colors    least squares method    beetle antennae search   
收稿日期: 2022-03-31     修回日期:
DOI: 10.1051/jnwpu/20224061422
基金项目: 国家自然科学基金(5157147)、陕西省自然科学基金(2021JQ-481)与西安市科技计划(2020KJRC0086)资助
通讯作者: 李婵(1987—),深圳职业技术学院讲师、博士,主要从事高等色彩学、多光谱成像技术及图片质量评价研究。 e-mail:chanli030@163.com     Email:chanli030@163.com
作者简介: 高泽海(1989—),西安理工大学讲师、博士,主要从事人工智能算法研究
PDF(2288KB) Free
高泽海  在本刊中的所有文章
刘洋  在本刊中的所有文章
陈杰  在本刊中的所有文章
储墨林  在本刊中的所有文章
张研  在本刊中的所有文章
李婵  在本刊中的所有文章

[1] DAI S Y, PAN X N, MA L J, et al. Discovery of the linear region of near infrared diffuse reflectance spectra using the Kubelka-Munk theory[J]. Frontiers in Chemistry, 2018, 6:154
[2] TANG A Y, WANG Y M, LEE C H, et al. Computer color matching and levelness of PEG-based reverse micellar decamethyl cyclopentasiloxane(D5) solvent-assisted reactive dyeing on cotton fiber[J]. Applied Sciences, 2017, 7(7):682
[3] WEI J, PENG M, LI Q, et al. Evaluation of a novel computer color matching system based on the improved back-propagation neural network model[J]. Journal of Prosthodontics, 2018, 27(8):775-783
[4] DONG M W, BING S Z, MIN Y, et al. Research on application of controlling variables in computer color matching for textile dyeing[J]. Applied Mechanics and Materials, 2014, 3365(602/603/604/605):878-881
[5] MIN Y, BING S Z, DONG M W. Research on application of polynomial regression analysis for computer color matching in textile dyeing[J]. Applied Mechanics and Materials, 2014, 3365(602/603/604/605):719-772
[6] DIVYESH R P, NAITIK B P, BHAVESH M P, et al. Computer color matching(CCM) data of some newly synthesized acid dyes and their application on polyamide fibres[J]. Proceedings of the National Academy of Sciences, India Section A:Physical Sciences, 2013, 83(4):287-298
[7] TULEUSHEV A Z, HARRISON F E, KOZLOVSKIY A L, et al. Assessment of the irradiation exposure of PET film with swift heavy ions using the interference-free transmission UV-vis transmission spectra[J]. Polymers, 2021, 13(3):358
[8] ZAHID T, LI W. A comparative study based on the least square parameter identification method for state of charge estimation of a LiFePO4 battery pack using three model-based algorithms for electric vehicles[J]. Energies, 2016, 9(9):720
[9] KOIRALA P, HAUTA-KASARI M, MARTINKAUPPI B, et al. Color mixing and color separation of pigments with concentration prediction[J]. Color Research & Application, 2008, 33(6):461-469
[10] KANDI S G, TEHRAN M A. Color recipe prediction by genetic algorithm[J]. Dye Pigm, 2017, 74:677-683
[11] SABRINE C, ALI M, IMED B M. Colour recipe prediction using ant colony algorithm:principle of resolution and analysis of performances[J]. Color Technology, 2019, 135:349-360
[12] WERNER M, ERHAN D. UV-VIS absorption spectroscopy:lambert-beer reloaded[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2017, 173:965-968
[13] JIANG X Y, LI S. BAS:beetle antennae search algorithm for optimization problems[J]. International Journal of Robotics and Control, 2018, 1(1):1
[14] 康文运, 宋小全, 范东启. 可见光/近红外波段多波长皮秒激光研究[J]. 红外与毫米波学报, 2018; 37(4):433-436 KANG Wenyun, SONG Xiaoquan, FAN Dongqi. Research on visible/near infrared multi-wavelength picosecond laser[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4):433-436 (in Chinese)
[15] AL A M, CHEAH W P, TAN S C. Deep autoencoder-based community detection in complex networks with particle swarm optimization and continuation algorithms[J]. Journal of Intelligent & Fuzzy Systems, 2021; 40(3):4517-4533
[16] GASMI I, AZIZI M W, SERIDI B H, et al. Enhanced context-aware recommendation using topic modeling and particle swarm optimization[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(6):12227-12242
[17] JIN Y, XIAO M Y, SHENG L. Dynamic reproductive ant colony algorithm based on piecewise clustering[J]. Applied Intelligence, 2021, 51(12):8680-8700
[18] GAO Z H, LIU Y, WANG Q J, et al. Ensemble empirical mode decomposition energy moment entropy and enhanced long short-term memory for early fault prediction of bearing[J]. Measurement, 2022, 188:110417
[19] HOLM J, DYER S, SHERLOCK D. Illumination source metrics and color difference-selecting sources for cinematography[C]//Proceedings of the Color and Imaging Conference, 2018
[20] 张研, 周世生, 曹从军, 等. 基于吸光度的PET薄膜专色配方预测方法[J]. 光谱学与光谱分析, 2019, 39(2):415-420 ZHANG Yan, ZHOU Shisheng, CAO Congjun, et al. Prediction method of PET film spot color formula based on absorbance[J]. Spectroscopy and Spectral Analysis, 2019, 39(2):415-420 (in Chinese)