论文:2022,Vol:40,Issue(6):1335-1342
引用本文:
张军锋, 史耀耀, 蔺小军, 吴晓君. 百页轮柔性抛光力与法向位移关系模型研究[J]. 西北工业大学学报
ZHANG Junfeng, SHI Yaoyao, LIN Xiaojun, WU Xiaojun. Research on the contact model between the polishing force and normal displacement in the flexible polishing using ABFW[J]. Journal of Northwestern Polytechnical University

百页轮柔性抛光力与法向位移关系模型研究
张军锋1, 史耀耀2, 蔺小军2, 吴晓君1
1. 西安建筑科技大学 机电工程学院, 陕西 西安 710055;
2. 西北工业大学 航空发动机高性能制造工业和信息化部重点实验室, 陕西 西安 710072
摘要:
抛光力是影响百页轮柔性抛光表面质量和效率的关键参数,而百页轮和工件的法向位移是影响抛光力的直接因素,因此建立二者的关系模型十分重要和必要。根据百页轮结构特性建立了其表面磨粒分布函数;基于弹塑性接触理论得到单颗磨粒作用时抛光力和工件变形量的表达式,并根据百页轮表面磨粒分布函数建立了抛光力和法向位移的关系模型;通过仿真和实验对所建立关系模型进行验证。结果表明:该关系模型可较好地体现柔性抛光过程中抛光力和法向位移的对应关系。
关键词:    百页轮    柔性抛光力    法向位移    关系模型   
Research on the contact model between the polishing force and normal displacement in the flexible polishing using ABFW
ZHANG Junfeng1, SHI Yaoyao2, LIN Xiaojun2, WU Xiaojun1
1. School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2. Key Laboratory of High Performance Manufacturing for Aero Engine, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Polishing force is a key parameter that affects the polishing quality and efficiency in abrasive belt flap wheel (ABFW) polishing, which can be directly affected by the normal displacement between abrasive tool and workpiece. Therefore, it is very important and necessary to establish the relationship model. Firstly, the abrasive distribution function of ABFW is established based on its structural characteristics. According to the elastoplastic contact theory, the expression of polishing force and workpiece deformation under the single abrasive condition is obtained. And then, combined with the distribution function of abrasive, the contact model between polishing force and the deformation is established. Finally, the contact model is verified through simulation and experiment. The results show that the corresponding relationship of polishing force and normal displacement in the flexible polishing can be well represented by the contact model.
Key words:    abrasive belt flap wheel    flexible polishing force    normal displacement    contact model   
收稿日期: 2022-04-01     修回日期:
DOI: 10.1051/jnwpu/20224061335
基金项目: 陕西省教育厅自然科学专项(20JK0726)与陕西省自然科学基金(2022JQ-464)资助
通讯作者:     Email:
作者简介: 张军锋(1986—),西安建筑科技大学讲师,主要从事复杂曲面磨削工艺及机理研究。e-mail:574836232@qq.com
相关功能
PDF(3053KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张军锋  在本刊中的所有文章
史耀耀  在本刊中的所有文章
蔺小军  在本刊中的所有文章
吴晓君  在本刊中的所有文章

参考文献:
[1] 王庆明. 机械制造工艺学[M]. 上海:华东理工大学出版社, 2017 WANG Qingming. Machinery technology[M]. Shanghai:East China University of Science and Technology Press, 2017 (in Chinese)
[2] TANG J, JIN D, CHEN Y. Modeling and experimental study of grinding forces in surface grinding[J]. Journal of Materials Processing Technology, 2009, 209(6):2847-2854
[3] FENG D, SUN Y, DU H. Investigations on the automatic precision polishing of curved surfaces using a five-axis machining centre[J]. International Journal of Advanced Manufacturing Technology, 2014, 72(9/10/11/12):1625-1637
[4] XIAN C, SHI Y Y, LIN X J, et al. Force modeling for polishing aero-engine blades with abrasive cloth wheels[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11/12):5255-5267
[5] 史永杰. 基于磁流变力矩伺服的非球面数控研抛力-位-姿解耦技术研究[D]. 长春:吉林大学, 2012 SHI Yongjie. Research on force-position-posture decoupling in NC polishing based on magnetorheological torque servo[D]. Changchun:Jilin University, 2012 (in Chinese)
[6] 黄智, 董华章, 周振武, 等. 砂带磨削TC4磨削力数字建模及其预测[J]. 表面技术, 2018, 47(9):250-258 HUANG Zhi, DONG Huazhang, ZHOU Zhenwu, et al. Modeling and prediction of grinding force on belt grinding TC4[J]. Surface Technology, 2018, 47(9):250-258 (in Chinese)
[7] 淮文博, 唐虹, 史耀耀, 等. 砂布轮柔性抛光力的建模与参数优化[J]. 航空学报, 2016, 37(11):3535-3545 HUAI Wenbo, TANG Hong, SHI Yaoyao, et al. Modelling and parameter optimization of flexible polishing force for abrasive cloth wheel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3535-3545 (in Chinese)
[8] 黄云, 黄智. 现代砂带磨削技术及工程应用[M]. 重庆:重庆大学出版社, 2009 HUANG Yun, HUANG Zhi. The modern abrasive belt grinding technology and engineering application[M]. Chongqing:Chongqing University Press, 2009 (in Chinese)
[9] JIANG J, SHENG F, REN F. Modelling of two-body abrasive wear under multiple contact conditions[J]. Wear, 1998, 217(1):35-45
[10] GREENWOOD J A, WILLIAMSON J B P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London, 1966, 295(1442):300-319
[11] HOU Z B, KOMANDURI R. On the mechanics of the grinding process-Part I. Stochastic nature of the grinding process[J]. International Journal of Machine Tools & Manufacture, 2003, 43(15):1579-1593
[12] JOHNSON K L. Concact mechanics[M]. New York:Cambridge University Press, 1985
[13] CHANG W R. An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology, 1987, 109(2):257-263
[14] KOGUT L, ETSION I. Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics, 2002, 69(5):657-662
[15] ABBOTT E J. Specifying surface quality a method based on accurate measurement and comparison[J]. Mechanical Engineering, 1933, 55:569-572
[16] ZHAO Y, MAIETTA D M, CHANG L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 2000, 122(1):86-93
[17] 航空发动机设计用材料数据手册编委会. 航空发动机设计用材料数据手册第4册[M]. 北京:航空工业出版社, 2010 Editing committee of Material data book for aeroengine design. Material data book for aeroengine design volume 4[M]. Beijing:Aviation Industry Press, 2010 (in Chinese)