论文:2022,Vol:40,Issue(6):1305-1311
引用本文:
赖晓玲, 张健, 巨艇, 朱启, 郭阳明. 基于版图设计的DICE触发器单粒子翻转加固技术[J]. 西北工业大学学报
LAI Xiaoling, ZHANG Jian, JU Ting, ZHU Qi, GUO Yangming. Single event upset reinforcement technology of DICE flip-flop based on layout design[J]. Journal of Northwestern Polytechnical University

基于版图设计的DICE触发器单粒子翻转加固技术
赖晓玲1,2, 张健2, 巨艇2, 朱启2, 郭阳明1
1. 西北工业大学 计算机学院, 陕西 西安 710072;
2. 中国空间技术研究院西安分院, 陕西 西安 710199
摘要:
D触发器是时序逻辑电路的基础,随着集成电路工艺尺寸进入纳米级,单粒子多节点翻转(single event multiple upset,SEMU)现象趋于严重,双互锁存单元(dual interlocked storage cell,DICE)触发器加固设计方法的抗单粒子翻转(single event upset,SEU)能力已不能满足宇航需求。基于纳米工艺下D触发器的SEU加固技术以及DICE结构的翻转机理,兼顾电路性能、面积和功耗等资源开销,提出了一种以DICE电路结构为基础的版图级抗SEU触发器设计方法,并采用商用65 nm工艺实现了一款抗SEU的D触发器设计,其面积仅为商用结构触发器的1.8倍。电路功能及辐照性能仿真表明,该触发器的建立时间和传输延迟与商用结构触发器相当,在线性传输能(linear energy transfer,LET)阈值大约为37 MeV·cm2/mg的Ge离子轰击下没有发生SEU,触发器电路的性能和抗单粒子软错误能力表现优秀。在抗辐照专用集成电路设计中,极大节省了由加固D触发器电路所带来的面积、布线资源和时序开销。
关键词:    辐射效应    DICE触发器    单粒子翻转    版图加固   
Single event upset reinforcement technology of DICE flip-flop based on layout design
LAI Xiaoling1,2, ZHANG Jian2, JU Ting2, ZHU Qi2, GUO Yangming1
1. School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China;
2. Xi'an Institute of Space Radio Technology, Xi'an 710199, China
Abstract:
D flip-flop is the basis of timing logic circuit, and SEMU phenomenon tends to be serious with the integrated circuit process size shrinking to nanometer scale. The anti-SEU ability based on DICE structure for D flip-flop cannot meet the requirements of aerospace engineering. Based on the SEU reinforcement technology of D flip-flop under nano-technology and the SEU mechanism of DICE structure, a layout-level anti-SEU flip-flop design method based on DICE circuit structure is proposed considering the circuit performance, area, power consumption and other resource costs. And then a D flip-flop with SEU resistance is designed by commercial 65 nm process, and the designed flip-flop area is 1.8 times that of commercial structure flip-flop. The function and and radiation simulation results indicate that the establishment time and transmission delay of the flip-flop are equivalent to those of the commercial one, and no SEU occurs under the Ge ion bombardment with the LET threshold of approximately 37 MeV�cm2/mg. The performance of the flip-flop circuit and the ability to resist single particle soft error are excellent. In the anti-radiation ASIC design, the area, wiring resources and timing overhead caused by the reinforcement of the D flip-flop circuit are greatly saved.
Key words:    radiation effects    dual interlocked storage cell(DICE)    single event upset (SEU)    layout-hardened   
收稿日期: 2022-03-17     修回日期:
DOI: 10.1051/jnwpu/20224061305
基金项目: 中央高校基本科研业务费(D5000220351)资助
通讯作者: 郭阳明(1978—),西北工业大学教授,主要从事计算机应用技术研究。e-mail:yangming_g@nwpu.edu.cn     Email:yangming_g@nwpu.edu.cn
作者简介: 赖晓玲(1982—),西北工业大学博士研究生,主要从事空间抗辐照加固设计、ASIC/SoC设计研究
相关功能
PDF(5449KB) Free
打印本文
把本文推荐给朋友
作者相关文章
赖晓玲  在本刊中的所有文章
张健  在本刊中的所有文章
巨艇  在本刊中的所有文章
朱启  在本刊中的所有文章
郭阳明  在本刊中的所有文章

参考文献:
[1] BHARAT L Bhuva, HOLMAN W Timothy, MICHAEL L Alles, et al. Technology scaling and soft error reliability[C]//Proceedings of the International Reliability Physics Symposium, Anaheim, 2012
[2] BRADY John, FRANCIS A Matthew, HOLMES Jim, et al. An asynchronous cell library for operation in wide temperature & ionizing-radiation environments[C]//Aerospace Conference, 2015
[3] 李海松, 杨博, 蒋轶虎, 等. 基于65 nm体硅CMOS技术的DICE-DFF和TMR-DFF SEU辐射硬化方法分析[J]. 电子科技大学学报, 2022, 51(3):458-463 LI Haisong, YANG Bo, JIANG Tiehu, et al. Analysis of SEU radiation-hardened method about DICE-DFF and TMR-DFF based on 65 nm bulk CMOS technology[J]. Journal of UEST of China, 2022, 51(3):458-463 (in Chinese)
[4] 张健, 赖晓玲, 周国昌, 等. 基于130 nm工艺嵌入式SRAM单粒子软错误加固技术研究[J]. 空间电子技术, 2020, 17(5):63-70 ZHANG Jian, LAI Xiaoling, ZHOU Guochang, et al. The research of embedded SRAM SEU preventing based on 130 nm CMOS process[J]. Space Electronic Technology, 2020, 17(5):63-70 (in Chinese)
[5] KEITA Sakamoto, SHUNSUKE Baba, DAISUKE Kobayashi, et al. Investigation of buried-well potential perturbation effects on SEU in SOI DICE-based flip-flop under proton irradiation[J]. IEEE Trans on Nuclear Science, 2021, 68(6):1222-1227
[6] JAGANNATHAN S, LOVELESS T D, BHUVA B L, et al. Single-event tolerant flip-flop design in 40 nm bulk CMOS technology[J]. IEEE Trans on Nuclear Science, 2011, 58(6):3033-3037
[7] FUMA Mori, MITSUNORI, YUTO Tsukita, et al. Intrinsic vulnerability to soft errors and a mitigation technique by layout optimization on DICE flip flops in a 65 nm bulk pross[J]. IEEE Trans on Nuclear Science, 2021, 68(8):1727-1735
[8] CAI Chang, LIU Tianqi, ZHAO Peixiong, et al. Multiple layout-hardening comparation of SEU mitigated filp-flops in 22 nm UTBB FD-SOI technology[J]. IEEE Trans on Nuclear Science, 2020, 67(1):374-381
[9] RIAZ Naseer, JEFF Draper. A scalable solution for soft error tolerant circuit design[C]//IEEE International Symposium on Circuits and Systems, 2006
[10] AKIFUMI Maru, HIROYUKI Shindou, TSUKASA Ebihara, et al. DICE-based flip-flop with SET pulse discriminator on a 90 nm bulk CMOS process[J]. IEEE Trans on nuclear science, 2010, 57(6):3602-3608
[11] BAZE M, HUGHLOCK B, WERT J, et al. Angular dependence of single event sensitivity in hardened flip/flop designs[J]. IEEE Trans on Nuclear Science, 2008, 55(6):3295-3301
[12] REED R, WELLER R, MENDENHALL M, et al. Impact of ion energy and species on single event effects analysis[J]. IEEE Trans on Nuclear Science, 2007, 54(6):2312-2321
[13] LEE Hsiao-Heng Kelin, LILJA Klas, BOUNASSER Mounaim, et al. Design framework for soft-error-resilient sequential cells[J]. IEEE Trans on Nuclear Science, 2011, 58(6):3026-3032
[14] BLACK J D, STERNBERG A L, ALLESET AL M L, et al. HBD layout isolation techniques for multiple node charge collection mitigation[J]. IEEE Trans on Nuclear Science, 2005, 52(6):2536-2541
[15] 李赛, 陈睿, 韩建伟, 等. 脉冲激光诱发65 nm体硅CMOS加固触发器链的单粒子翻转敏感度研究[J]. 航天器环境工程, 2020, 38(1):55-62 LI Sai, CHEN Rui, HAN Jianwei, et al. Sensibility of single event upset of hardened D flip-flop chain in 65 nm bulk silicon CMOS irradiated by pulsed laser[J]. Spacecraft Environment Engineering, 2020, 38(1):55-62 (in Chinese)