|
|
论文:2022,Vol:40,Issue(6):1305-1311 |
|
|
引用本文: |
|
|
赖晓玲, 张健, 巨艇, 朱启, 郭阳明. 基于版图设计的DICE触发器单粒子翻转加固技术[J]. 西北工业大学学报 |
|
|
LAI Xiaoling, ZHANG Jian, JU Ting, ZHU Qi, GUO Yangming. Single event upset reinforcement technology of DICE flip-flop based on layout design[J]. Northwestern polytechnical university |
|
|
|
|
|
|
|
基于版图设计的DICE触发器单粒子翻转加固技术 |
|
赖晓玲1,2, 张健2, 巨艇2, 朱启2, 郭阳明1 |
|
1. 西北工业大学 计算机学院, 陕西 西安 710072; 2. 中国空间技术研究院西安分院, 陕西 西安 710199 |
摘要: |
D触发器是时序逻辑电路的基础,随着集成电路工艺尺寸进入纳米级,单粒子多节点翻转(single event multiple upset,SEMU)现象趋于严重,双互锁存单元(dual interlocked storage cell,DICE)触发器加固设计方法的抗单粒子翻转(single event upset,SEU)能力已不能满足宇航需求。基于纳米工艺下D触发器的SEU加固技术以及DICE结构的翻转机理,兼顾电路性能、面积和功耗等资源开销,提出了一种以DICE电路结构为基础的版图级抗SEU触发器设计方法,并采用商用65 nm工艺实现了一款抗SEU的D触发器设计,其面积仅为商用结构触发器的1.8倍。电路功能及辐照性能仿真表明,该触发器的建立时间和传输延迟与商用结构触发器相当,在线性传输能(linear energy transfer,LET)阈值大约为37 MeV·cm2/mg的Ge离子轰击下没有发生SEU,触发器电路的性能和抗单粒子软错误能力表现优秀。在抗辐照专用集成电路设计中,极大节省了由加固D触发器电路所带来的面积、布线资源和时序开销。 |
关键词:
辐射效应
DICE触发器
单粒子翻转
版图加固
|
|
Single event upset reinforcement technology of DICE flip-flop based on layout design |
|
LAI Xiaoling1,2, ZHANG Jian2, JU Ting2, ZHU Qi2, GUO Yangming1 |
|
1. School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China; 2. Xi'an Institute of Space Radio Technology, Xi'an 710199, China |
Abstract: |
D flip-flop is the basis of timing logic circuit, and SEMU phenomenon tends to be serious with the integrated circuit process size shrinking to nanometer scale. The anti-SEU ability based on DICE structure for D flip-flop cannot meet the requirements of aerospace engineering. Based on the SEU reinforcement technology of D flip-flop under nano-technology and the SEU mechanism of DICE structure, a layout-level anti-SEU flip-flop design method based on DICE circuit structure is proposed considering the circuit performance, area, power consumption and other resource costs. And then a D flip-flop with SEU resistance is designed by commercial 65 nm process, and the designed flip-flop area is 1.8 times that of commercial structure flip-flop. The function and and radiation simulation results indicate that the establishment time and transmission delay of the flip-flop are equivalent to those of the commercial one, and no SEU occurs under the Ge ion bombardment with the LET threshold of approximately 37 MeV�cm2/mg. The performance of the flip-flop circuit and the ability to resist single particle soft error are excellent. In the anti-radiation ASIC design, the area, wiring resources and timing overhead caused by the reinforcement of the D flip-flop circuit are greatly saved. |
Key words:
radiation effects
dual interlocked storage cell(DICE)
single event upset (SEU)
layout-hardened
|
|
收稿日期: 2022-03-17
修回日期:
|
DOI: 10.1051/jnwpu/20224061305 |
基金项目: 中央高校基本科研业务费(D5000220351)资助 |
通讯作者: 郭阳明(1978—),西北工业大学教授,主要从事计算机应用技术研究。e-mail:yangming_g@nwpu.edu.cn
Email:yangming_g@nwpu.edu.cn |
作者简介: 赖晓玲(1982—),西北工业大学博士研究生,主要从事空间抗辐照加固设计、ASIC/SoC设计研究
|
|
相关功能 |
|
|
|
作者相关文章 |
|
赖晓玲 在本刊中的所有文章 |
张健 在本刊中的所有文章 |
巨艇 在本刊中的所有文章 |
朱启 在本刊中的所有文章 |
郭阳明 在本刊中的所有文章 |
|
|
|
|
|
|
|
|
参考文献: |
|
|
[1] BHARAT L Bhuva, HOLMAN W Timothy, MICHAEL L Alles, et al. Technology scaling and soft error reliability[C]//Proceedings of the International Reliability Physics Symposium, Anaheim, 2012 [2] BRADY John, FRANCIS A Matthew, HOLMES Jim, et al. An asynchronous cell library for operation in wide temperature & ionizing-radiation environments[C]//Aerospace Conference, 2015 [3] 李海松, 杨博, 蒋轶虎, 等. 基于65 nm体硅CMOS技术的DICE-DFF和TMR-DFF SEU辐射硬化方法分析[J]. 电子科技大学学报, 2022, 51(3):458-463 LI Haisong, YANG Bo, JIANG Tiehu, et al. Analysis of SEU radiation-hardened method about DICE-DFF and TMR-DFF based on 65 nm bulk CMOS technology[J]. Journal of UEST of China, 2022, 51(3):458-463 (in Chinese) [4] 张健, 赖晓玲, 周国昌, 等. 基于130 nm工艺嵌入式SRAM单粒子软错误加固技术研究[J]. 空间电子技术, 2020, 17(5):63-70 ZHANG Jian, LAI Xiaoling, ZHOU Guochang, et al. The research of embedded SRAM SEU preventing based on 130 nm CMOS process[J]. Space Electronic Technology, 2020, 17(5):63-70 (in Chinese) [5] KEITA Sakamoto, SHUNSUKE Baba, DAISUKE Kobayashi, et al. Investigation of buried-well potential perturbation effects on SEU in SOI DICE-based flip-flop under proton irradiation[J]. IEEE Trans on Nuclear Science, 2021, 68(6):1222-1227 [6] JAGANNATHAN S, LOVELESS T D, BHUVA B L, et al. Single-event tolerant flip-flop design in 40 nm bulk CMOS technology[J]. IEEE Trans on Nuclear Science, 2011, 58(6):3033-3037 [7] FUMA Mori, MITSUNORI, YUTO Tsukita, et al. Intrinsic vulnerability to soft errors and a mitigation technique by layout optimization on DICE flip flops in a 65 nm bulk pross[J]. IEEE Trans on Nuclear Science, 2021, 68(8):1727-1735 [8] CAI Chang, LIU Tianqi, ZHAO Peixiong, et al. Multiple layout-hardening comparation of SEU mitigated filp-flops in 22 nm UTBB FD-SOI technology[J]. IEEE Trans on Nuclear Science, 2020, 67(1):374-381 [9] RIAZ Naseer, JEFF Draper. A scalable solution for soft error tolerant circuit design[C]//IEEE International Symposium on Circuits and Systems, 2006 [10] AKIFUMI Maru, HIROYUKI Shindou, TSUKASA Ebihara, et al. DICE-based flip-flop with SET pulse discriminator on a 90 nm bulk CMOS process[J]. IEEE Trans on nuclear science, 2010, 57(6):3602-3608 [11] BAZE M, HUGHLOCK B, WERT J, et al. Angular dependence of single event sensitivity in hardened flip/flop designs[J]. IEEE Trans on Nuclear Science, 2008, 55(6):3295-3301 [12] REED R, WELLER R, MENDENHALL M, et al. Impact of ion energy and species on single event effects analysis[J]. IEEE Trans on Nuclear Science, 2007, 54(6):2312-2321 [13] LEE Hsiao-Heng Kelin, LILJA Klas, BOUNASSER Mounaim, et al. Design framework for soft-error-resilient sequential cells[J]. IEEE Trans on Nuclear Science, 2011, 58(6):3026-3032 [14] BLACK J D, STERNBERG A L, ALLESET AL M L, et al. HBD layout isolation techniques for multiple node charge collection mitigation[J]. IEEE Trans on Nuclear Science, 2005, 52(6):2536-2541 [15] 李赛, 陈睿, 韩建伟, 等. 脉冲激光诱发65 nm体硅CMOS加固触发器链的单粒子翻转敏感度研究[J]. 航天器环境工程, 2020, 38(1):55-62 LI Sai, CHEN Rui, HAN Jianwei, et al. Sensibility of single event upset of hardened D flip-flop chain in 65 nm bulk silicon CMOS irradiated by pulsed laser[J]. Spacecraft Environment Engineering, 2020, 38(1):55-62 (in Chinese) |
|
|
|
|
|
|
|