论文:2022,Vol:40,Issue(6):1288-1296
引用本文:
范力元, 张浩哲, 徐钊, 吕明伟, 胡劲文, 赵春晖, 刘晓斌. 基于安全飞行走廊的无人机密集障碍规避算法[J]. 西北工业大学学报
FAN Liyuan, ZHANG Haozhe, XU Zhao, LYU Mingwei, HU Jinwen, ZHAO Chunhui, LIU Xiaobin. A dense obstacle avoidance algorithm for UAVs based on safe flight corridor[J]. Journal of Northwestern Polytechnical University

基于安全飞行走廊的无人机密集障碍规避算法
范力元1, 张浩哲1, 徐钊2, 吕明伟3, 胡劲文1, 赵春晖1, 刘晓斌4
1. 西北工业大学 自动化学院, 陕西 西安 710072;
2. 西北工业大学 电子信息学院, 陕西 西安 710072;
3. 沈阳飞机设计研究所, 辽宁 沈阳 110035;
4. 西安现代控制技术研究所, 陕西 西安 710065
摘要:
针对固定翼无人机在复杂密集多障碍物环境中的自主避障问题,提出了一种基于安全飞行走廊的固定翼无人机路径规划算法。密集障碍规避的难点在于障碍绕行与穿行的选择:绕行虽然更安全,但飞行成本更大;穿行虽然飞行成本更低,但安全威胁较高,如何快速求解最优路径是其中的核心问题。创新性地根据固定翼无人机的机动特性与Dubins曲线定义了安全飞行走廊,综合考虑无人机飞行安全与飞行成本,构建了障碍威胁评价函数;针对障碍物密集造成的计算复杂问题,提出了基于障碍物密度的障碍聚类算法,并通过蒙特卡洛采样法实现了高动态环境下的非线性评价函数快速近似求解;通过仿真验证了所提算法对于解决固定翼无人机密集障碍规避的有效性。
关键词:    固定翼无人机    Dubins曲线    飞行走廊    蒙特卡洛采样法    障碍规避   
A dense obstacle avoidance algorithm for UAVs based on safe flight corridor
FAN Liyuan1, ZHANG Haozhe1, XU Zhao2, LYU Mingwei3, HU Jinwen1, ZHAO Chunhui1, LIU Xiaobin4
1. School of Automation, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China;
3. Shenyang Aircraft Design Research Institute, Shenyang 110035, China;
4. Xi'an Modern Control Technology Research Institute, Xi'an 710065, China
Abstract:
Aiming at the problem of autonomous obstacle avoidance of fixed-wing UAVs in a complex, dense and multi-obstacle environment, a path planning algorithm for fixed-wing UAVs based on a safe flight corridor is proposed. The difficulty of avoiding dense obstacles lies in the choice of obstacle circumvention and traversal: although circumvention is safer, the flight cost is greater; although the traversal cost is lower, the safety threat is higher. How to quickly solve the optimal path is the core issue. This paper firstly defines a safe flight corridor innovatively based on the maneuvering characteristics of fixed-wing UAVs and the Dubins curves. By comprehensively considering UAV flight safety and flight costs, an obstacle threat evaluation function is constructed. Secondly, in view of the computational complexity caused by the dense obstacles, an obstacle clustering algorithm based on obstacle density is proposed, and the nonlinear evaluation function in a high dynamic environment is quickly approximated by Monte Carlo sampling method. Finally, simulations verify the effectiveness of the proposed algorithm in solving dense obstacle avoidance for fixed-wing UAVs.
Key words:    fixed-wing UAV    Dubins curves    flight corridor    Monte Carlo sampling method    obstacle avoidance   
收稿日期: 2022-03-31     修回日期:
DOI: 10.1051/jnwpu/20224061288
基金项目: 陕西省重点研发计划(2020ZDLGY06-02)、航空科学基金(2019ZA053008,20185553034)资助
通讯作者: 徐钊(1982—),西北工业大学副教授,主要从事无人机网络控制、神经网络、学习控制与健康管理研究。 e-mail:zhaoxu@nwpu.edu.cn     Email:zhaoxu@nwpu.edu.cn
作者简介: 范力元(1999—),西北工业大学硕士研究生,主要从事无人机编队协同控制研究
相关功能
PDF(2632KB) Free
打印本文
把本文推荐给朋友
作者相关文章
范力元  在本刊中的所有文章
张浩哲  在本刊中的所有文章
徐钊  在本刊中的所有文章
吕明伟  在本刊中的所有文章
胡劲文  在本刊中的所有文章
赵春晖  在本刊中的所有文章
刘晓斌  在本刊中的所有文章

参考文献:
[1] GUPTE S L, MOHANDAS P I T, CONRAD J M, et al. A survey of quadrotor unmanned aerial vehicles[C]//Proceedings of IEEE Southeastcon, 2012
[2] ANGELOV P. Sense and avoid in UAS:research and applications[M]. Hoboken:John Wiley & Sons, Ltd., 2012:99-103
[3] KORF R E. Depth-first iterative-deepening:an optimal admissible tree search[J]. Artificial Intelligence, 2012, 27(1):97-109
[4] CHABINI I, LAN S. Adaptations of the A* algorithm for the computation of fastest paths in deterministic discrete-time dynamic networks[J]. IEEE Trans on Intelligent Transportation Systems, 2002, 3(1):60-74
[5] NANNICINI G, SCHULTE D, LIBERTI L, et al. Bidirectional A* search on time-dependent road networks[J]. Networks, 2011, 59(2):240-251
[6] STENTX A. Optimal and efficient path planning for partially known environments//Intelligent unmanned ground vehicles[M] Boston:Springer, 1997:203-220
[7] WONG W E, DEBROY V, GAO R, et al. The DStar method for effective software fault localization[J]. IEEE Trans on Reliability, 2014, 63(1):290-238
[8] KOEING S, LIKHACHEV M. Fast replanning for navigation in unknown terrain[J]. IEEE Trans on Robotics, 2005, 21(3):254-363
[9] KARAMAN S, WALTER M R, PEREZ A, et al. Anytime Motion Planning using the RRT*[C]//IEEE International Conference on Robotics and Automation, 2011
[10] RODRIGUEZ S, TANG X Y, LIEN J M, et al. An obstacle-based rapidly-exploring random tree[C]//IEEE International Conference on Robotics and Automation, 2006
[11] WU X, XU L, ZHEN R, et al. Biased sampling potentially guided intelligent bidirectional RRT* algorithm for UAV path planning in 3D environment[J]. Mathematical Problems in Engineering, 2019, 2019:5157403
[12] SONG J, ZHAO M, LIU Y, et al. Multi-rotor UAVs path planning method based on improved artificial potential field method[C]//2019 Chinese Control Conference, 2019
[13] SNAPE J, BERG J V D, GUY S J, et al. The hybrid reciprocal velocity obstacle[J]. IEEE Trans on Robotics, 2011, 27(4):696-709
[14] ULRICH I, BORENSTEIN J. VFH+:reliable obstacle avoidance for fast mobile robots[C]//IEEE International Conference on Robotics and Automation, 1998
[15] RASHEDI E, HOSSEIN N-P, SAEID S, et al. GSA:a gravitational search algorithm[J]. Information Sciences, 2009, 179(13):2232-2248
[16] PETER J. M, LAARHOVEN V, EMILE H, et al. Simulated annealing//Simulated annealing:theory and application[M]. Dordrecht:Springer, 1987:7-15
[17] HU Y R, YANG S X. A knowledge based genetic algorithm for path planning of a mobile robot[C]//IEEE International Conference on Robotics and Automation, 2004
[18] LYU Y, CHEN Y, TIAN J. Particle swarm optimization for fixed-wing UAV path planning[C]//International Conference on Autonomous Unmanned Systems, Singapore, 2021
[19] CHHOTRAY A, DAYAL R P. Navigational control analysis of two-wheeled self-balancing robot in an unknown terrain using back-propagation neural network integrated modified DAYANI approach[J]. Scholarly Journal, 2019, 37(8):1346-1362
[20] SARADINDU G, PARTAP K P, PARHI D R. Performance comparison of novel WNN approach with RBFNN in navigation of autonomous mobile robotic agent[J]. Serbian Journal of Electrical Engineering, 2016, 13(2):239-262
[21] KAHN G, VILLAFLOR A, DING B, et al. Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation[C]//IEEE International Conference on Robotics and Automation, 2018
[22] VANEGAS G. SAMANIEGO F, GIRBES V, et al. Smooth 3D path planning for non-holonomic UAVs[C]//International Conference on Systems and Control, 2018
[23] LEE D, SONG H J, SHIM D H. Optimal path planning based on spline-RRT* for fixed-wing UAVs operating in three-dimensional environments[C]//International Conference on Control, Automation and Systems, 2014
[24] KELLER J, THAKUR D, LIKHACHEV M, et al. Coordinated path planning for fixed-wing UAS conducting persistent surveillance missions[J]. IEEE Trans on Automation Science and Engineering 2017, 14(1):17-24
[25] BENDERS S, SCHOPFERER S. A line-graph path planner for performance constrained fixed-wing UAVs in wind fields[C]//International Conference on Unmanned Aircraft Systems, 2017
[26] SONG X Q, HU S Q. 2D path planning with dubins-path-based A*algorithm for a fixed-wing UAV[C]//IEEE International Conference on Control Science and Systems Engineering, 2017
[27] SANDERS G, RAY T. Optimal offline path planning of a fixed wing unmanned aerial vehicle (UAV) using an evolutionary algorithm[C]//IEEE Congress on Evolutionary Computation, 2007
[28] ROBERGE V, TARBOUCHI M, LABONTE G. Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning[J]. IEEE Trans on Industrial Informatics, 2013, 9(1):132-141
[29] ROBERGE V, TARBOUCHI M, LABONTE G. Fast genetic algorithm path planner for fixed-wing military UAV using GPU[J], IEEE Trans on Aerospace and Electronic Systems, 2018, 54(5):2015-2117
[30] DUBINS L E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents[J]. American Journal of Mathematics, 1957, 79(3):497-516
[31] SHKEL A M, LUMELSKY V. Classification of the dubins set[J]. Robotics and Autonomous Systems, 2001, 34(4):179-202