论文:2022,Vol:40,Issue(6):1269-1277
引用本文:
强宝宝, 佟瑞庭, 叶军, 权泽芬, 王静岩, 李士林. 颤振环境软金属碰撞滑动接触摩擦的分子动力学模拟[J]. 西北工业大学学报
QIANG Baobao, TONG Ruiting, YE Jun, QUAN Zefen, WANG Jingyan, LI Shilin. Molecular dynamics simulation on friction performance of collision sliding contacts of soft metals in vibration environment[J]. Journal of Northwestern Polytechnical University

颤振环境软金属碰撞滑动接触摩擦的分子动力学模拟
强宝宝1, 佟瑞庭1, 叶军1, 权泽芬2, 王静岩1, 李士林1
1. 西北工业大学 机电学院, 陕西 西安 710072;
2. 上海飞机设计研究院, 上海 200436
摘要:
软金属因剪切强度低,具有一定的抗压强度和韧性,常用于空间机构润滑。空间微重力环境导致运动机构在很小的扰动下发生颤振,研究颤振环境下软金属的摩擦性能对于空间润滑材料应用有非常重要的意义。以空间间隙铰链为例,将轴与轴承的相对运动简化为圆柱体与基体的碰撞滑动接触运动,建立了刚性圆柱压头与弹性基体碰撞滑动接触的分子动力学模型,研究了滑动速度、碰撞速度和压头半径对软金属摩擦性能的影响。结果表明:Ag基体和Au基体对Fe压头的黏着作用较强;压头与基体始终处于黏着滑动状态,压头初始碰撞速度越大,摩擦力越大;随着滑动速度的增加,摩擦力增大;压头半径增加,摩擦力增大。Cu基体对Fe压头的黏着作用较小,摩擦力较小,且软金属Cu的摩擦性能最优,Au的摩擦性能较差。
关键词:    碰撞滑动接触    颤振环境    软金属    分子动力学模拟   
Molecular dynamics simulation on friction performance of collision sliding contacts of soft metals in vibration environment
QIANG Baobao1, TONG Ruiting1, YE Jun1, QUAN Zefen2, WANG Jingyan1, LI Shilin1
1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. Shanghai Aircraft Design and Reserch Institute, Shanghai 200436, China
Abstract:
Soft metals are often used for space mechanism lubrication because of their low shear strength. In outer space, the vibration of spatial mechanism will occur when there is a small disturbance due to the effects of microgravity environment. Studies on the friction properties of soft metals in vibration environment could contribute to the application of space lubrication materials. Taking a clearance joint as an example, the relative motion between the shaft and the bearing is simplified to a sliding contact between a cylinder and two smooth contact bodies. A molecular dynamics model of the collision sliding contact between a rigid cylindrical indenter and an elastic substrate is established. The effects of sliding velocity, collision velocity and indenter radius on the friction properties of soft metals are studied. The results show that the Ag substrate and Au substrate present strong adhesion to the Fe indenter. The indenter and the substrate are always in a state of adhesive sliding contact. The larger the initial collision velocity of the indenter, the higher the friction force. The friction force shows great values as the sliding velocity increases. As the increase of indenter radius, the contact area is enlarged, which results in a high friction force. The adhesion of the Cu substrate to the Fe indenter is weak, so the friction force shows a low value, and the friction performance of Cu is the best, while the friction performance of Au is the worst.
Key words:    collision sliding contact    vibration environment    soft metal    molecular dynamics simulation   
收稿日期: 2022-01-15     修回日期:
DOI: 10.1051/jnwpu/20224061269
基金项目: 国家自然科学基金(52075444,51675429)与中央高校基本科研业务费(31020190503004)资助
通讯作者: 佟瑞庭(1981—),西北工业大学副教授,主要从事机电作动系统、机械设计、摩擦学及数值计算方法研究。 e-mail:tongruiting@nwpu.edu.cn     Email:tongruiting@nwpu.edu.cn
作者简介: 强宝宝(1991—),西北工业大学硕士研究生,主要从事摩擦学研究
相关功能
PDF(3150KB) Free
打印本文
把本文推荐给朋友
作者相关文章
强宝宝  在本刊中的所有文章
佟瑞庭  在本刊中的所有文章
叶军  在本刊中的所有文章
权泽芬  在本刊中的所有文章
王静岩  在本刊中的所有文章
李士林  在本刊中的所有文章

参考文献:
[1] 钟爱文, 姚萍屏, 肖叶龙, 等. 空间摩擦学及其材料的研究进展[J]. 航空材料学报, 2017, 37(2):88-99 ZHONG Aiwen, YAO Pingping, XIAO Yelong, et al. Research status and developing trend of space tribology and tribological materials[J]. Journal of Aeronautical Materials, 2017, 37(2):88-99 (in Chinese)
[2] TONG Ruiting, LIU Geng. Friction property of impact sliding contact under vacuum and microgravity[J]. Microgravity Science and Technology, 2019, 31(1):85-94
[3] TONG Ruiting, HAN Bin, ZHANG Xiao, et al. Molecular dynamics simulation on collision frictional properties of a molybdenum disulfide(MoS2) film in microgravity environment[J]. Microgravity Science and Technology, 2021, 33(4):33-47
[4] 张执南, 谢友柏. 摩擦学系统的系统工程及其航天应用[J]. 飞控与探测, 2019, 2(6):1-11 ZHANG Zhinan, XIE Youbai. System engineering of tribology system for space application[J]. Flight Control & Detection, 2019, 2(6):1-11 (in Chinese)
[5] JOHNSON M R. The galileo high gain antenna deployment anomaly[C]//28th Aerospce Mechanisms Symposium, 1994:359-377
[6] ROBERTS E W. Space tribology:its role in spacecraft mechanisms[J]. Journal of Physics D Applied Physics, 2012, 45(50):503001
[7] 吴元博, 杨学锋, 王守仁, 等. V字型表面织构在油润滑条件下的摩擦学性能[J]. 西北工业大学学报, 2019, 37(2):401-406 WU Yuanbo, YANG Xuefeng, WANG Shouren, et al. Tribological properties of V-shaped surface texture under oil lubrication condition[J]. Journal of Northwestern Polytechnical University, 2019, 37(2):401-406 (in Chinese)
[8] 刘泊天, 张静静, 高鸿, 等. 空间用润滑材料研究进展[J]. 材料导报, 2017, 31(增刊2):290-292 LIU Botian, ZHANG Jingjing, GAO Hong, et al. Research progress of lubricants for space application[J]. Materials Review, 2017, 31(suppl 2):290-292 (in Chinese)
[9] LI Yuanyuan, YANG Yang, LI Meng, et al. Dynamics analysis and wear prediction of rigid-flexible coupling deployable solar array system with clearance joints considering solid lubrication[J]. Mechanical Systems and Signal Processing, 2022, 162(7/8):108059
[10] LIU Yanmin, WANG Kang, XU Qiang, et al. Superlubricity between graphite layers in ultrahigh vacuum[J]. ACS Applied Materials & Interfaces, 2020, 12(38):43167-43172
[11] 谢凤, 朱江. 固体润滑剂概述[J]. 合成润滑材料, 2007, 34(1):31-33 XIE Feng, ZHU Jiang. Briefly review of solid lubricants[J]. Synthetic Lubricants, 2007, 34(1):31-33 (in Chinese)
[12] 尹念, 张执南, 张俊彦. 导电滑环Au涂层摩擦磨损行为的分子动力学模拟[J]. 摩擦学学报, 2018, 38(1):108-114 YIN Nian, ZHANG Zhinan, ZHANG Junyan. Molecular dynamics simulation of friction and wear behaviors of Au coating for conductive slip ring[J]. Tribology, 2018, 38(1):108-114 (in Chinese)
[13] TONG Ruiting, QUAN Zefen, HAN Bin, et al. Coarse-grained molecular dynamics simulation on friction behaviors of textured Ag-coating under vacuum and microgravity environments[J]. Surface and Coatings Technology, 2019, 359:265-271
[14] 袁志威, 李文正, 李金龙, 等. TaC-Ag涂层的结构和摩擦学性能[J]. 上海金属, 2021, 43(5):21-26 YUAN Zhiwei, LI Wenzheng, LI Jinlong, et al. Structure and tribological property of TaC-Ag coating[J]. Shanghai Metals, 2021, 43(5):21-26 (in Chinese)
[15] 吴耀佳, 张懋达, 付永强, 等. 含Ag硬质涂层的结构及其摩擦腐蚀与抗菌特性的研究进展[J]. 表面技术, 2021, 50(1):94-106 WU Yaojia, ZHANG Maoda, FU Yongqiang, et al. Research progress in structure, tribological corrosion and antibacterial properties of Ag-containing hard coatings[J]. Surface Technology, 2021, 50(1):94-106 (in Chinese)
[16] TONG Ruiting, LIU Geng. Molecular dynamics simulation of friction and heat properties of nano-texture GOLD film in space environment[J]. Surface and Coatings Technology, 2019, 358:775-784
[17] LIN Enqiang, NIU Lisha, SHI Huiji, et al. Molecular dynamics simulation of nano-scale interfacial friction characteristic for different tribopair systems[J]. Applied Surface Science, 2012, 258(6):2022-2028
[18] 姚小飞, 谢发勤, 王毅飞, 等. TC4钛合金表面镀Cu摩擦磨损性能的研究[J]. 稀有金属材料与工程, 2012, 41(12):2135-2138 YAO Xiaofei, XIE Faqin, WANG Yifei, et al. Research on tribological and wear properties of Cu coating on TC4 alloy[J]. Rare Metal Materials and Engineering, 2012, 41(12):2135-2138 (in Chinese)
[19] CHEN Xiang, HAN Zhong. A low-to-high friction transition in gradient nano-grained Cu and Cu-Ag alloys[J]. Friction, 2021, 9(6):1558-1567
[20] RUDD R E, BROUGHTON J Q. Coarse-grained molecular dynamics and the atomic limit of finite elements[J]. Physical Review B, 1998, 58(10):5893-5896
[21] RAFII-TABAR H. Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations[J]. Physics Reports, 2000, 325(6):240-310
[22] GIRIFALCO L, WEIZER V. Application of the morse potential function to cubic metals[J]. Physical Review, 1959, 114(3):687-690
[23] KOZLOV É, POPOV L E, STAROSTENKOV M D. Calculation of the morse potential for solid gold[J]. Soviet Physics Journal, 1972, 15(3):395-396
[24] MOORE D F. Principles and applications of tribology[M]. Oxford:Pergamon Press, 1975
[25] 温诗铸. 纳米摩擦学[M]. 北京:清华大学出版社, 1998 WEN Shizhu. Nanotribology[M]. Beijing:Tsinghua University Press, 1998 (in Chinese)