论文:2022,Vol:40,Issue(5):1109-1115
引用本文:
齐照辉, 张今, 王远卓, 王嘉, 徐梦荣, 张程. 基于自适应超螺旋滑模弹道跟踪控制方法[J]. 西北工业大学学报
QI Zhaohui, ZHANG Jin, WANG Yuanzhuo, WANG Jia, XU Mengrong, ZHANG Cheng. Trajectory tracking control method based on adaptive super-twisting sliding mode[J]. Journal of Northwestern Polytechnical University

基于自适应超螺旋滑模弹道跟踪控制方法
齐照辉1, 张今2, 王远卓2,3, 王嘉1, 徐梦荣1, 张程4
1. 航天飞行器生存技术与效能评估实验室, 北京 100089;
2. 西北工业大学 航天学院, 陕西 西安 710072;
3. 北京航空航天大学 宇航学院, 北京 100191;
4. 西安邮电大学 自动化学院, 陕西 西安 710121
摘要:
针对导弹组网编队飞行过程中弹道跟踪控制问题,求解两点边值问题得到最优标称轨迹,结合滑模控制器抗干扰特性,提出了基于自适应超螺旋滑模弹道跟踪控制器设计方法。在末制导模型的基础上通过非线性规划的思想求解两点边值问题进而得到最优标称轨迹;结合自适应超螺旋滑模算法设计了基于状态偏差的跟踪控制器;引入LQR弹道跟踪控制法作为对比方法,通过仿真验证了在存在初始状态误差下滑模弹道跟踪方法的有效性和可行性,并通过蒙特卡罗仿真验证了该方法在不同初始状态偏差下仍具有良好的轨迹跟踪控制效果。
关键词:    轨迹跟踪    自适应超螺旋滑模控制    蒙特卡罗   
Trajectory tracking control method based on adaptive super-twisting sliding mode
QI Zhaohui1, ZHANG Jin2, WANG Yuanzhuo2,3, WANG Jia1, XU Mengrong1, ZHANG Cheng4
1. The Institute of Effectiveness Evaluation of Flying Vehicle, Beijing 100089, China;
2. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
3. School of Astronautics, Beihang University, Beijing 100191, China;
4. School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract:
Aiming at the problem of trajectory tracking control in the process of missile network formation flying, based on the optimal nominal trajectory obtained by solving the two-point boundary value problem, combined with the anti-jamming characteristics of the sliding mode controller, a trajectory tracking control method based on the adaptive super-twisting sliding mode is proposed. First, on the basis of the terminal guidance section model, the two-point boundary value problem is solved through the idea of nonlinear programming to obtain the optimal nominal trajectory; Secondly, the tracking controller based on state deviation is designed in combination with the adaptive super-twisting sliding mode algorithm; Finally, the LQR trajectory tracking control method is introduced as a comparison method, and the effectiveness and feasibility of the sliding mode trajectory tracking method in the presence of initial state errors are verified by simulations, and the Monte Carlo simulation shows that the proposed method has good trajectory tracking control effect in the presence of different initial state errors.
Key words:    trajectory tracking    adaptive super-twisting sliding mode control    Monte Carlo   
收稿日期: 2021-12-25     修回日期:
DOI: 10.1051/jnwpu/20224051109
基金项目: 航空科学基金(20180153002,20200001053001)资助
通讯作者: 王远卓(1999-),北京航空航天大学硕士研究生,主要从事飞行器制导与控制技术研究。e-mail:wangyuanzhuo@126.com     Email:wangyuanzhuo@126.com
作者简介: 齐照辉(1977—),航天飞行器生存技术与效能评估实验室副研究员,主要从事导弹攻防仿真与效能评估研究。
相关功能
PDF(2278KB) Free
打印本文
把本文推荐给朋友
作者相关文章
齐照辉  在本刊中的所有文章
张今  在本刊中的所有文章
王远卓  在本刊中的所有文章
王嘉  在本刊中的所有文章
徐梦荣  在本刊中的所有文章
张程  在本刊中的所有文章

参考文献:
[1] 姚郁,郑天宇,贺风华,等.飞行器末制导中的几个热点问题与挑战[J].航空学报, 2015, 36(8):2696-2716 YAO Yu, ZHENG Tianyu, HE Fenghua, et al. Several hot issues and challenges in terminal guidance of flight vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2696-2716(in Chinese)
[2] LU P, DOMAN D B, SCHIERMAN J D. Adaptive terminal guidance for hypervelocity impact in specified direction[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2):269-278
[3] KUMAR S R, RAO S, GHOSE D. Nonsingular terminal sliding mode guidance with impact angle constraints[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4):1114-1130
[4] 胡正东,曹渊,蔡洪.带落角约束的再入机动弹头的变结构导引律[J].系统工程与电子技术, 2009, 31(2):393-398 HU Zhengdong, CAO Yuan, CAI Hong. Variable structure guidance law of reentry maneuvering warhead with terminal angular constraint[J]. Systems Engineering and Electronics, 2009, 31(2):393-398(in Chinese)
[5] 王晓海,孟秀云,周峰,等.基于偏置比例导引的落角约束滑模制导律[J].系统工程与电子技术, 2021, 43(5):1295-1302 WANG Xiaohai, MENG Xiuyun, ZHOU Feng, et al. Sliding mode guidance law with impact angle constraint based on bias proportional navigate[J]. System Engineering, and Electronics, 2021, 43(5):1295-1302(in Chinese)
[6] 陈克俊,赵汉元.一种适用于攻击地面固定目标的最优再入机动制导律[J].宇航学报, 1994(1):1-7 CHEN Kejun, ZHAO Hanyuan. An optimal reentry maneuver guidance law applying to attack the ground fixed target[J]. Journal of Astronautics, 1994(1):1-7(in Chinese)
[7] 赵汉元,陈克俊.再入机动弹头的速度控制[J].国防科技大学学报, 1993(2):11-17 ZHAO Hanyuan, CHEN Kejun. Velocity control of maneuvering reetry vehicle[J]. Journal of National University of Defense Technology, 1993(2):11-17(in Chinese)
[8] SHTESSEL Y, TALEB M, PLESTAN F. A novel adaptive-gain supertwisting sliding mode controller:methodology and application[J]. Automatica, 2012, 48(5):759-769
[9] 刘畅,杨锁昌,汪连栋,等.基于快速自适应超螺旋算法的制导律[J].北京航空航天大学学报, 2019, 45(7):1388-1397 LIU Chang, YANG Suochang, WANG Liandong, et al. Guidance law based on fast adaptive super-twisting algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7):1388-1397(in Chinese)
[10] ESFAHANI H N, SZLAPCZYNSKI R, GHAEMI H. High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-based adaptive gains and time delay estimation[J]. Ocean Engineering, 2019, 191:106526
[11] DUKEMAN G A. Profile-following entry guidance using linear quadratic regulator theory[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2002
[12] 方群,李新国,朱战霞,等.航天飞行动力学[M].西安:西北工业大学出版社, 2015 FANG Qun, LI Xinguo, ZHU Zhanxia, et al. Space flight dynamics[M]. Xi'an:Northwestern Polytechnical University Press, 2015(in Chinese)
[13] 张大元,雷虎民,吴玲,等.基于LQR的弹道跟踪制导律设计[J].固体火箭技术, 2014, 37(6):763-768 ZHANG Dayuan, LEI Humin, WU Ling, et al. A trajectory tracking guidance law based on LQR[J]. Journal of Solid Rocket Technology, 2014, 37(6):763-768(in Chinese)
[14] LIU X F. Fuel-optimal rocket landing with aerodynamic controls[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(1):65-77
[15] LU P, SUN H S, TSAI B. Closed-loop endoatmospheric ascent guidance[J]. Journal of Guidance, Control, and Dynamics, 2013, 26(2):283-294
[16] ISIDORI A, SONTAG E D, THOMA M. Nonlinear control systems[M]. London:Springer, 1995
[17] LEVANT A. Sliding order and sliding accuracy in sliding mode control[J]. International Journal of Control, 1993, 58(6):1247-1263
[18] ZHANG C, TAHOUMI E, GUTIERREZ S, et al. Adaptive robust control of floating offshore wind turbine based on sliding mode[C]//2019 IEEE 58th Conference on Decision and Control, 2019:6936-6941