论文:2022,Vol:40,Issue(5):1071-1079
引用本文:
余秋阳, 李兴华, 李新涛, 徐胜金. 大展弦比NACA0012弹性平直机翼颤振特性研究[J]. 西北工业大学学报
YU Qiuyang, LI Xinghua, LI Xintao, XU Shengjin. Study on flutter characteristics of NACA0012 flexible straight wing with high-aspect-ratio[J]. Journal of Northwestern Polytechnical University

大展弦比NACA0012弹性平直机翼颤振特性研究
余秋阳1, 李兴华2, 李新涛1, 徐胜金1
1. 清华大学 航天航空学院, 北京 100083;
2. 哈尔滨理工大学 理学院, 黑龙江 哈尔滨 150080
摘要:
采用三维雷诺平均N-S方程和S-A湍流模型求解展弦比为16的NACA0012弹性平直机翼的非定常气动力,结合机翼动力学方程,建立了机翼颤振时域分析方法。利用该方法对机翼的颤振特性、颤振过程中的变形和振动响应,以及瞬时流场进行数值模拟和分析,并研究材料刚度和密度对机翼颤振速度和频率的影响。结果表明,由于展弦比较大,且材质轻柔,机翼会出现一定幅度的静弯曲变形。第二阶(垂向弯曲)和第三阶(扭转)振动模态的耦合作用是机翼发生颤振的原因,且颤振频率介于这两阶模态固有频率之间。对比不同材料刚度和密度下机翼的颤振速度和频率,发现材料刚度的增大会提高颤振速度和频率,材料密度的增大会使颤振速度先降低然后趋于不变,颤振频率一直降低。
关键词:    大展弦比机翼    颤振    模态   
Study on flutter characteristics of NACA0012 flexible straight wing with high-aspect-ratio
YU Qiuyang1, LI Xinghua2, LI Xintao1, XU Shengjin1
1. School of Aerospace Engineering, Tsinghua University, Beijing 100083, China;
2. School of Science, Harbin University of Science and Technology, Harbin 150080, China
Abstract:
The three-dimensional Reynolds averaged N-S equations and the S-A turbulence model are adopted to solve the unsteady aerodynamic forces of NACA0012 flexible straight wing with high-aspect-ratio of 16. Combining with the wing dynamic equation, a flutter time-domain analysis method is established. The flutter characteristics of the wing, the deformation and vibration response in the flutter process, and the instantaneous flow field are numerically simulated and analyzed by using this method. The influences of the material stiffness and density on the flutter velocity and frequency of the wing are also studied. The results show that due to the high aspect ratio and soft material, the wing has a certain range of static bending deformation. The coupling effect of the second (flatwise bending) and third (torsion) order vibration modes is the cause of wing flutter, and the flutter frequency is between the natural frequencies of these two modes. Comparing the flutter velocity and frequency under different material stiffness and density, it is found that the enlarged material stiffness leads to higher flutter velocity and frequency, while with the increasing of material density, the flutter velocity decreases firstly and then tends to be unchanged, the flutter frequency always decreases.
Key words:    high-aspect-ratio wing    flutter    mode   
收稿日期: 2021-12-16     修回日期:
DOI: 10.1051/jnwpu/20224051071
基金项目: 航空科学基金(201958058001)与博士后科学基金(2020M670302)资助
通讯作者: 李新涛(1989-),清华大学博士后,主要从事空气动力学研究。e-mail:li454181405@126.com     Email:li454181405@126.com
作者简介: 余秋阳(1994—),清华大学博士研究生,主要从事空气动力学研究。
相关功能
PDF(3174KB) Free
打印本文
把本文推荐给朋友
作者相关文章
余秋阳  在本刊中的所有文章
李兴华  在本刊中的所有文章
李新涛  在本刊中的所有文章
徐胜金  在本刊中的所有文章

参考文献:
[1] 刘国春.大展弦比机翼气动外形设计方案研究[J].飞机设计, 2011, 31(3):9-12 LIU Gouchun. Research on design of high aspect wing shape[J]. Aircraft Design, 2011, 31(3):9-12(in Chinese)
[2] ARENA A, LACARBONARA W, MARZOCCA P. Nonlinear aeroelastic formulation and postflutter analysis of flexible high-aspect-ratio wings[J]. Journal of Aircraft, 2013, 50(6):1748-1764
[3] 马艳峰,贺尔铭,曾宪昂,等.基于流固耦合方法的大展弦比机翼非线性颤振特性分析[J].西北工业大学学报, 2014, 32(4):536-541 MA Yanfen, HE Erming, ZENG Xianang, et al. Studying nonlinear flutter of high-aspect-ratio wing based on fluid solid coupling[J]. Journal of Northwestern Polytechnical University, 2014, 32(4):536-541(in Chinese)
[4] 段静波,周洲,江涛.基于曲梁模型的大展弦比大柔性机翼颤振分析[J].西北工业大学学报, 2016, 34(5):774-782 DUAN Jingbo, ZHOU Zhou, JIANG Tao. A method for flutter of the very flexible wing with high-aspect-ratio based on curve beam model[J]. Journal of Northwestern Polytechnical University, 2016, 34(5):774-782(in Chinese)
[5] 谢长川,吴志刚,杨超.大展弦比柔性机翼的气动弹性分析[J].北京航空航天大学学报, 2003, 29(12):1088-1090 XIE Changchuan, WU Zhigang, YANG Chao. Aeroelastic analysis of flexible large aspect ratio wing[J]. Journal of Beijing University of Aeronautic and Astronautics, 2003, 29(12):1088-1090(in Chinese)
[6] TANG D M, DOWELL E H. Comments on the ONERA stall aerodynamic model and its impact on aeroelastic stability[J]. Journal of Fluids and Structures, 1996, 10:353-366
[7] PETERS D A, KARUNAMOORTHY S, CAO W M. Finite state induced flow models; I-two-dimensional thin airfoils[J]. Journal of Aircraft, 1995, 32(2):313-322
[8] 杨超,杨澜,谢长川.大展弦比柔性机翼气动弹性分析中的气动力方法研究进展[J].空气动力学学报, 2018, 36(6):1009-1019 YANG Chao, YANG Lan, XIE Changchuan. Development of aerodynamic methods in aeroelastic analysis for high aspect ratio flexible wing[J]. Acta Aerodynamic Sinica, 2018, 36(6):1009-1019(in Chinese)
[9] KATZ J, PLOTKIN A. Low-speed aerodynamics:from wing theory to panel methods[M]. New York:McGraw-Hill, 1991
[10] 孙岩, ANDREA D R,王运涛,等.基于非线性涡格法的快速静气动弹性数值模拟技术[J].气体物理, 2020, 5(6):26-38 SUN Yan, ANDREA D R, WANG Yuntao, et al. Fast static aeroelasticity simulation approach based on nonlinear vortex lattice method[J]. Physics of Gases, 2020, 5(6):26-38(in Chinese)
[11] PATIL M J, HODGES D H. Limit-Cycle oscillations in high-aspect-ratio wings[J]. Journal of Fluid and Structures, 2001, 15:107-132
[12] AFONSO F, LEAL G, VALE J, et al. The effect of stiffness and geometric parameters on the nonlinear aeroelastic performance of high aspect ratio wings[J]. Proceedings of The Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(10):1-27
[13] HODGES D H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J]. International Journal of Solids and Structures, 1990, 26(11):1253-1273
[14] CRISFIELD M A. A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 81(2):131-150
[15] 王伟,段卓毅,耿建中,等.基于CR理论的大柔性机翼几何非线性结构建模[J].航空学报, 2017, 38(增刊1):72154 WANG Wei, DUAN Zhuoyi, GENG Jianzhong, et al. Modelling of geometrically nonlinear structure of large flexible wing based on CR theory[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(suppl 1):72154(in Chinese)
[16] 叶正寅,王刚,张伟伟.流固耦合力学基础及其应用[M].哈尔滨:哈尔滨工业大学出版社, 2016 YE Zhengyin, WANG Gang, ZHANG Weiwei. Fundamentals of fluid-structure coupling and its application[M]. Harbin:Harbin Institute of Technology Press, 2016(in Chinese)
[17] QIAO Shengjun, JIAO Jin, NI Yingge, et al. Effect of stiffness on flutter of composite wings with high aspect ratio[J]. Mathematical Problems in Engineering, 2021, 4:1-14
[18] KEIVAN E, MORTEZA D, MOHAMMAD H P, et al. Effects of aeroelastic nonlinearity on flutter and limit cycle oscillations of high-aspect-ratio wings[J]. Applied Mechanics and Materials, 2012, 110/111/112/113/114/115/116:4297-4306
[19] ANDREA A, WALTER L. Nonlinear aeroelastic formulation and postflutter analysis of flexible high-aspect-ratio wings[J]. Journal of Aircraft, 2013, 50(6):1748-1764
[20] 刘湘宁,向锦武.大展弦比复合材料机翼的非线性颤振分析[J].航空学报, 2006, 27(2):213-218 LIU Xiangning, XIANG Jinwu. Study of nonlinear flutter of high-aspect-ratio composite wing[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(2):213-218(in Chinese)
[21] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows[J]. Recherche Aerospatiale, 1994, 1:5-21
[22] ZHANG W W, JIANG Y W, YE Z Y. Two better loosely coupled solution algorithms of CFD based aeroelastic simulation[J]. Engineering Applications of Computational Fluid Mechanics, 2007, 1(4):253-262
[23] WANG G, MIAN H H, YE Z Y, et al. Improved point selection method for hybrid-unstructured mesh deformation using radial basis functions[J]. AIAA Journal, 2014, 53(4):1016-1025
[24] YATES E C J. AGARD Standard aeroelastic configurations for dynamic response I-wing 445.6[R]. NASA TM-1988-0017809, 1988
[25] SILVA W A, LII B P, CHWALOWSKI P. Evaluation of linear, inviscid, viscous, and reduced-order modelling aeroelastic solutions of the AGARD 445.6 wing using root locus analysis[J]. International Journal of Computational Fluid Dynamics, 2014, 28(3):122-139
[26] 郑欣,刘宇斌,陈璞,等.基于弯扭耦合理论的颤振频率计算方法[J].工程力学, 2018, 35(增刊1):1-5 ZHENG Xin, LIU Yubin, CHEN Pu, et al. Two-dimensional wing flutter frequency calculation method based on bending torsion coupling theory[J]. Engineering Mechanics, 2018, 35(suppl 1):1-5(in Chinese)
相关文献:
1.程毅, 余智豪, 赵金瑞, 周云.分布式吊舱机翼建模与气动弹性分析[J]. 西北工业大学学报, 2022,40(5): 1100-1108
2.马艳峰, 贺尔铭, 曾宪昂, 李俊杰, 唐长红.基于流固耦合方法的大展弦比机翼非线性颤振特性分析[J]. 西北工业大学学报, 2014,32(4): 535-541