论文:2022,Vol:40,Issue(5):1039-1045
引用本文:
郑锐平, 史静平, 屈晓波. 紧密编队飞行的建模控制与仿真[J]. 西北工业大学学报
ZHENG Ruiping, SHI Jingping, QU Xiaobo. Modeling, simulation, analysis and control of close formation flight[J]. Journal of Northwestern Polytechnical University

紧密编队飞行的建模控制与仿真
郑锐平1,2, 史静平1,2, 屈晓波1,2
1. 西北工业大学 自动化学院, 陕西 西安 710129;
2. 陕西省飞行控制与仿真技术重点实验室, 陕西 西安 710129
摘要:
对某小型无人机编队模型进行了研究,分析了长机产生的尾流对僚机的扰动。研究发现,长机对僚机的升力和阻力有显著影响。在编队飞行中,当僚机处于适当位置时,气动特性可以得到改善。建立了长机尾流涡的数学模型,利用计算流体动力学(CFD)软件对2架无人机进行了仿真,验证了数学模型的准确性。为了实现紧密编队飞行的稳定性,设计了一种控制算法,并且进行了数学仿真和验证,所设计的控制律能够使僚机在编队飞行中保持在合适队形,使得僚机获得最大的升力。
关键词:    无人机    紧密编队    计算流体动力学(CFD)   
Modeling, simulation, analysis and control of close formation flight
ZHENG Ruiping1,2, SHI Jingping1,2, QU Xiaobo1,2
1. School of Automation, Northwestern Polytechnical University, Xi'an 710129 China;
2. Shaanxi Province Key Laboratory of Flight Control and Simulation Technology, Xi'an 710129 China
Abstract:
This paper focuses on the aerodynamic characteristics of aircraft close formation flight. The formation model for small unmanned aircraft is studied, and the disturbance of the wake induced velocity generated by the leader aircraft on the tail aircraft is analyzed. It is found that the lead aircraft has a significant effect on the lift and drag of the tail aircraft. It is also demonstrated that the aerodynamic characteristics of the tail plane can be improved when the following plane is in the proper position of the leader in formation flight. Precise position control of the tail plane in general flight operations is achieved under the influence of the tail vortex. Firstly, a model for the wake vortex of the leader was established, and then computational fluid dynamics(CFD) software was used to simulate the two unmanned aerial vehicles (UAVs) to verify the accuracy of the model. A control algorithm was designed to realize the stability of formation flight. Mathematical simulation and validation were performed. The designed control law is able to keep the tail plane in the appropriate position in the formation flight so that the tail plane is subjected to the maximum lift.
Key words:    unmanned aerial vehicles    close formation flight    computational fluid dynamics (CFD)   
收稿日期: 2021-12-16     修回日期:
DOI: 10.1051/jnwpu/20224051039
基金项目: 国家自然科学基金(62173277,61573286)、陕西省自然科学基金(2022JM-011)与航空科学基金(201905053004)资助
通讯作者: 史静平(1980-),西北工业大学教授,主要从事飞行控制技术研究。e-mail:shijingping@nwpu.edu.cn     Email:shijingping@nwpu.edu.cn
作者简介: 郑锐平(1993—),西北工业大学博士研究生,主要从事飞行控制技术研究。
相关功能
PDF(3579KB) Free
打印本文
把本文推荐给朋友
作者相关文章
郑锐平  在本刊中的所有文章
史静平  在本刊中的所有文章
屈晓波  在本刊中的所有文章

参考文献:
[1] PORTUGAL S J, HUBEL T Y, FRITZ J, et al. Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight[J]. Nature, 2014, 505(7483):399
[2] LISSAMAN P B, SHOLLENBERGER C A. Formation flight of birds[J]. Science, 1970, 168(3934):1003-1005
[3] CUTTS C J, SPEAKMAN J R. Energy savings in formation flight of pink-footed geese[J]. Journal of Experimental Biology, 1994, 189(1):251-261
[4] WEIMERSKIRCH H, MARTIN J, CLERQUIN Y, et al. Energy saving in flight formation[J]. Nature, 2001, 413(6857):697-698
[5] VACHON M J, RAY R J, WALSH K R, et al. F/A-18 performance benefits measured during the autonomous formation flight Project[C]//AIAA Atmospheric Flight Mechanics Conference, Monferey, California, 2002
[6] BLAKE W B, GINGRAS D R. Comparison of predicted and measured formation flight interference effects[J]. Journal of Aircraft, 2004, 41(2):201-207
[7] SABAN D, WHIDBORNE J F, COOKE A K. Simulation of wake vortex effects for UAVs in close formation flight[J]. Aeronautical Journal-New Series, 2009, 113(1149):727-738
[8] CHO H, LEE S, HAN C. Experimental study on the aerodynamic characteristics of a fighter-type aircraft model in close formation flight[J]. Journal of Mechanical Science and Technology, 2014, 28(8):3059-3065
[9] VICROY D, VIJGEN P, REIMER H, et al. Recent NASA wake-vortex flight tests, flow-physics database and wake-develop-ment analysis[C]//World Aviation Conference, 1998
[10] RAY R, COBLEIGH B, VACHON M, et al. Flight test techniques used to evaluate performance benefits during formation flight[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2002
[11] AHMAD N N, PROCTOR F. Review of idealized aircraft wake vortex models[C]//52nd Aerospace Sciences Meeting, 2014
[12] HANSEN J L, COBLEIGH B R. Induced moment effects of formation flight using two F/A-18 Aircraft[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Monterey, CA, 2002
[13] ZHANG Q, LIU T. Aerodynamics modeling and analysis of close formation flight[J]. Journal of Aircraft, 2017, 54(6):2192-2204
[14] SHAN J, LIU H T. Close-formation flight control with motion synchronization[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(6):1316-1320
[15] PROUD A, PACHTER M, D'AZZO J. Close formation flight control[C]//Guidance, Navigation, and Control Conference and Exhibit, 1999
[16] ALMEIDA F. Tight formation flight with feasible model predictive control[C]//AIAA Guidance, Navigation, and Control Conference, 2015
[17] PACHTER M, D'AZZO J J, PROUD W A. Tight formation flight control[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2):246-254
[18] ZHANG Q, LIU H H. Robust design of close formation flight control via uncertainty and disturbance estimator[C]//AIAA Guidance, Navigation, and Control Conference, 2016