论文:2022,Vol:40,Issue(5):1021-1029
引用本文:
杨小康, 杨浩, 严恭敏, 李四海. 基于Legendre多项式的一种高精度捷联惯导姿态更新算法[J]. 西北工业大学学报
YANG Xiaokang, YANG Hao, YAN Gongmin, LI Sihai. A high-accuracy SINS attitude update algorithm based on Legendre polynomial[J]. Journal of Northwestern Polytechnical University

基于Legendre多项式的一种高精度捷联惯导姿态更新算法
杨小康, 杨浩, 严恭敏, 李四海
西北工业大学 自动化学院, 陕西 西安 710072
摘要:
高超声速飞行器(hypersonic flight vehicle,HFV)大加速度运动、旋转导弹的高速转动和战斗机的大机动飞行等对捷联惯导系统(strapdown inertial navigation system,SINS)提出了更高的要求,只有在减小IMU(inertial measurement unit)测量误差的同时改进捷联惯导算法,才能在高动态大机动条件下实现高精度定位。传统的捷联惯导算法,在忽略Bortz方程高阶项后,通过构建圆锥误差补偿项完成高精度姿态解算。在大机动条件下补偿后的残差已不再是可以忽略的小量,激励出的算法误差已严重影响导航解算精度。为了提升大机动条件下的捷联惯导算法精度,用Legendre多项式作基完成角速度函数逼近,以四元数微分方程数值求解为核心,设计一种高精度SINS姿态解算。由于在推导过程中没有近似,在精确数值计算中实现了高阶圆锥误差补偿。在圆锥运动和大机动环境下进行姿态解算仿真,与目前精度最高的四次叉乘圆锥误差算法相比,新算法在圆锥运动下的误差不到其算法误差的1/3,在大机动条件下算法精度可以提升一个量级。基于Legendre多项式的高精度捷联惯导算法对未来高超音速飞行器精确定位、原子陀螺惯导系统研究以及捷联惯导算法设计都有一定的参考意义。
关键词:    姿态算法    捷联惯导    Legendre多项式    圆锥运动    大机动   
A high-accuracy SINS attitude update algorithm based on Legendre polynomial
YANG Xiaokang, YANG Hao, YAN Gongmin, LI Sihai
School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The large-acceleration motion of HFV (hypersonic flight vehicle), the high-speed rolling of spinning missile, and the large-maneuver flight of fighter aircraft has put forward higher performance demand for SINS (strapdown inertial navigation system). The high-accuracy positing will be realized under the high-dynamic maneuver environment after decreasing measurement error of IMU (inertial measurement unit), meanwhile the algorithm of SINS must be improved. The conventional algorithm calculates the flight attitude with determining the compensation term of coning error, after ignoring the high-order term of the Bortz equation. To improve the algorithm accuracy of SINS under high-dynamic maneuver environment, a high-accuracy algorithm, which uses Legendre polynomial to complete angular velocity function approximation and takes the numerical method of quaternion differential equation as core, is proposed herein. The high-order coning error is compensated in the numerical solving period in the proposed novel algorithm, because no approximation exists in deducing process. The attitude calculating simulations are finished in coning motion condition and high-dynamic maneuver condition respectively. Compared with the quadruple-cross-product compensation algorithm which has the highest accuracy at present, the attitude error of proposed algorithm is less than its 1/3 in coning motion condition. And algorithm accuracy is raised an order of magnitude under the high-dynamic maneuver environment. The high-accuracy algorithm based on Legendre polynomial has reference significance for accurate positing of future HFV, atomic gyroscope INS research and high-accuracy algorithm design of SINS.
Key words:    attitude algorithm    strapdown inertial navigation system    Legendre polynomial    coning motion    high-dynamic maneuver   
收稿日期: 2021-11-08     修回日期:
DOI: 10.1051/jnwpu/20224051021
基金项目: 国家自然科学基金(51879219)资助
通讯作者: 严恭敏(1977-),西北工业大学副教授,主要从事捷联惯导与组合导航算法研究。e-mail:yangongmin@163.com     Email:yangongmin@163.com
作者简介: 杨小康(1994—),西北工业大学博士研究生,主要从事捷联惯导与组合导航算法研究。
相关功能
PDF(2957KB) Free
打印本文
把本文推荐给朋友
作者相关文章
杨小康  在本刊中的所有文章
杨浩  在本刊中的所有文章
严恭敏  在本刊中的所有文章
李四海  在本刊中的所有文章

参考文献:
[1] 秦永元.惯性导航[M]. 2版.北京:科学出版社, 2014 QIN Yongyuan. Inertial Navigation[M]. 2nd ed. Beijing:Science Press, 2014(in Chinese)
[2] 严恭敏,翁浚.捷联惯导算法与组合导航原理[M].西安:西北工业大学出版社, 2019 YAN Gongmin, WENG Jun. The strapdown inertial naugation algorithm and intergrated nauigotion theory[M]. Xi'an:Northwestern Polytechnical University, Press, 2019(in Chinese)
[3] BORTZ J E. A new mathematical formulation for strapdown inertial navigation[J]. IEEE Trans on Aerospace Electronic Systems, 1971, AES-7(1):61-66
[4] MILLER R B. A new strapdown attitude algorithm[J]. Journal of Guidance Control and Dynamics, 1983, 6(4):287-291
[5] IGNAGNI M B. Optimal strapdown attitude integration algorithms[J]. Journal of Guidance Control and Dynamics, 1990, 13(2):363-369
[6] IGNAGNI M B. Efficient class of optimized coning compensation algorithms[J]. Journal of Guidance Control and Dynamics, 1996, 19(2):424-429
[7] 宋敏.高动态下捷联惯性导航算法误差分析与优化方法研究[D].长沙:国防科学技术大学, 2012 SONG Min. Research on error analysis and optimization methods for strapdown inertial navigation algorithm under highly dynamic environment[D]. Changsha:National University of Defense Technology, 2012(in Chinese)
[8] WANG M S, WU W Q, WANG J L, et al. High-order attitude compensation in coning and rotation coexisting environment[J]. IEEE Trans on Aerospace and Electronic Systems, 2015, 51(2):1178-1190
[9] WANG M S, WU W Q, HE X F, et al. Higher-order rotation vector attitude updating algorithm[J]. Journal of Navigation, 2019, 72(3):721-740
[10] 严恭敏,翁浚,杨小康,等.基于毕卡迭代的捷联姿态更新精确数值解法[J].宇航学报, 2017, 38(12):1307-1313 YAN Gongmin, WENG Jun, YANG Xiaokang, et al. An accurate numerical solution for strapdown attitude algorithm based on Picard iteration[J]. Journal of Astronautics, 2017, 38(12):1307-1313(in Chinese)
[11] WU Y X, YAN G M. Attitude reconstruction from inertial measurements:QuatFIter and its comparison with RodFIter[J]. IEEE Trans on Aerospace and Electronic Systems, 2019, 55(6):3629-3639
[12] WU Y X. RodFIter:attitude reconstruction from inertial measurement by functional iteration[J]. IEEE Trans on Aerospace and Electronic Systems, 2018, 54(5):2131-2142
[13] YANG C, YAO F, ZHANG M, et al. Adaptive sliding mode pid control for underwater manipulator based on legendre polynomial function approximation and its experimental evaluation[J]. Applied Sciences, 2020, 10(5):1728
[14] SINGH A K, MEHRA M. Wavelet collocation method based on Legendre polynomials and its application in solving the stochastic fractional integro-differential equations[J]. Journal of Computational Science, 2021, 51:101342
[15] PIRETZIDIS D, SIDERIS M G. Analytical expressions and recurrence relations for the Pn-1(t)-Pn+1(t) function, derivative and integral[J]. Journal of Geodesy, 2021, 95(6):1-12
[16] ZIRKOHI M M. Direct adaptive function approximation techniques based control of robot manipulators[J]. Journal of Dynamic Systems, Measurement and Control, 2018, 140(1):011006
[17] KHORASHADIZADEH S, FATEH M M. Robust task-space control of robot manipulators using Legendre polynomials for uncertainty estimation[J]. Nonlinear Dynamics, 2015, 79(2):1151-1161
[18] 严恭敏,杨小康,翁浚,等.一种求解姿态不可交换误差补偿系数的通用方法[J].宇航学报, 2017, 38(7):723-727 YAN Gongmin, Yang Xiaokang, Weng Jun, et al. A general method to obtain noncommutativity error compensation coefficients for strapdown attitude algorithm[J]. Journal of Astronautics, 2017, 38(7):723-727(in Chinese)