论文:2022,Vol:40,Issue(4):918-925
引用本文:
张国飞, 李志成, 任桂周, 李玉瑶, 齐义忠, 司圆全. 基于差分进化算法的混合电源功率分配多目标优化[J]. 西北工业大学学报
ZHANG Guofei, LI Zhicheng, REN Guizhou, LI Yuyao, QI Yizhong, SI Yuanquan. Multi-objective optimization of power distribution of hybrid power source based on differential evolution algorithm[J]. Northwestern polytechnical university

基于差分进化算法的混合电源功率分配多目标优化
张国飞, 李志成, 任桂周, 李玉瑶, 齐义忠, 司圆全
烟台大学 机电汽车工程学院, 山东 烟台 264005
摘要:
混合电源需实现卓越的功率分配控制以提升车辆性能,而优化算法可根据车辆需求自动地寻求既定目标的最优解,以实现混合电源的最佳功率分配。功耗是评价功率分配控制的核心指标,蓄电池的电流变化率是影响其功耗和寿命的重要因素。以全主动配置的混合电源拓扑结构为应用对象,引入一种新颖的具有收敛速度快且全局搜索能力强的差分进化算法以实现多优化目标的实时功率分配控制;充分考虑功耗和蓄电池的电流变化率2个重要参数,建立了混合电源的功耗模型,给出了混合电源的功耗、蓄电池输出电流与蓄电池电流变化率之间的函数关系;以混合电源的功耗最小以及蓄电池输出电流变化率最小为优化目标,赋予2个优化目标权重系数,以寻求2个优化目标之间的影响关系。仿真实例结果验证了所设计方案的有效性和可靠性。研究结果为电动汽车混合电源功率分配控制及优化提供参考。
关键词:    混合电源    功率分配控制    差分进化算法    功耗最小    蓄电池电流变化率最小   
Multi-objective optimization of power distribution of hybrid power source based on differential evolution algorithm
ZHANG Guofei, LI Zhicheng, REN Guizhou, LI Yuyao, QI Yizhong, SI Yuanquan
School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
Abstract:
The hybrid power source needs to achieve the excellent power distribution control to enhance the vehicle performance, the optimization algorithm can automatically seek the optimal target according to vehicle requirements to achieve the best power distribution of hybrid power source. Power consumption is one of the core indicators for evaluating power distribution control of hybrid power source, as well as the current fluctuation of battery is an important factor that affects its power consumption and cycle life. Taking the fully-active hybrid power source configuration as the application object, a differential evolution algorithm with fast convergence speed and strong global search ability to achieve real-time power distribution control with multiple optimization goals is introduced by fully considering two important parameters of power consumption and battery current fluctuation, the power consumption model for the hybrid power source is established, the functional relationship between the power consumption of hybrid power source, current change of battery and its output current is given. In this algorithm, the minimum power consumption of the hybrid power source and the minimum change rate of the battery output current are selected as the optimization goals, the weight coefficients of the two optimization goals are assigned to seek the influence relationship between the two optimization goals. The empirical results from a simulation verify effectiveness and reliability of the designed scheme. The research results provide a reference for controlling the power distribution and optimizing the hybrid power source of electric vehicle.
Key words:    hybrid power source    power distribution control    differential evolution algorithm    Minimum power consumption    minimum change rate of battery output current   
收稿日期: 2021-10-09     修回日期:
DOI: 10.1051/jnwpu/20224040918
基金项目: 山东省自然科学基金(ZR2020ME210)与烟台大学研究生科技创新基金(YDZD2126)资助
通讯作者: 任桂周(1979-),烟台大学副教授、硕士生导师,主要从事新能源汽车关键技术研究。e-mail:lucky_my2008@163.com     Email:lucky_my2008@163.com
作者简介: 张国飞(1997-),烟台大学硕士研究生,主要从事基于混合电源的能量控制策略研究。
相关功能
PDF(3426KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张国飞  在本刊中的所有文章
李志成  在本刊中的所有文章
任桂周  在本刊中的所有文章
李玉瑶  在本刊中的所有文章
齐义忠  在本刊中的所有文章
司圆全  在本刊中的所有文章

参考文献:
[1] ZHANG L, HU X, WANG Z, et al. Hybrid electrochemical energy storage systems: an overview for smart grid and electrified vehicle applications[J]. Renewable and Sustainable Energy Reviews, 2020, 139: 110581
[2] WANG Y, SUN Z, CHEN Z. Development of energy management system based on a rule-based power distribution strategy for hybrid power sources[J]. Energy, 2019, 175: 1055-1066
[3] DAO V H, DINH T X, TRUONG A, et al. Optimization-based fuzzy energy management strategy for pem fuel cell/battery/supercapacitor hybrid construction excavator[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8: 1267-1285
[4] MARZOUGUI H, KADRI A, MARTIN J P, et al. Implementation of energy management strategy of hybrid power source for electrical vehicle[J]. Energy Conversion & Management, 2019, 195: 830-843
[5] CHEN X P, HEWITT N, LI Z T, et al. Dynamic programming for optimal operation of a biofuel micro CHP-HES system[J]. Applied Energy, 2017, 208: 132-141
[6] YU S, LIN D, SUN Z, et al. Efficient model predictive control for real-time energy optimization of battery:supercapacitors in electric vehicles[J]. International Journal of Energy Research, 2020, 44(9): 7495-7506
[7] MESBAHI T, RIZOUG N, BARTHOLOMEVS P, et al. Optimal energy management for a Li-Ion battery/supercapacitor hybrid energy storage system based on a particle swarm optimization incorporating nelder-mead simplex approach[J]. IEEE Trans on Intelligent Vehicles, 2017, 2(2): 99-110
[8] XU D, LIU J, YAN X G, et al. A novel adaptive neural network constrained control for multi-area interconnected power system with hybrid energy storage[J]. IEEE Trans on Industrial Electronics, 2018, 65(8): 6625-6634
[9] AHMADI S, BATHAEE S, HOSSEINPOUR A H. Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy[J]. Energy Conversion and Management, 2018, 160: 74-84
[10] LI X, WANG Y, YANG D, et al. Adaptive energy management strategy for fuel cell/battery hybrid vehicles using pontryagin's minimal principle[J]. Journal of Power Sources, 2019, 440: 227105
[11] ODEIM F, ROES J, HEINZEL A. Power management optimization of a fuel cell/battery/supercapacitor hybrid system for transit bus applications[J]. IEEE Trans on Vehicular Technology, 2016, 65(7): 5783-5788
[12] JIANG Q, BÉTHOUX O, OSSART F, et al. A comparison of real-time energy management strategies of FC/SC hybrid power source: statistical analysis using random cycles[J]. International Journal of Hydrogen Energy, 2021, 46(63): 32192-32205
[13] EAST S, CANNON M. Optimal power allocation in battery/supercapacitor electric vehicles using convex optimization[J]. IEEE Trans on Vehicular Technology, 2020, 69(11): 12751-12762
[14] LI S, GU C, ZHAO P, et al. Adaptive energy management for hybrid power system considering fuel economy and battery longevity[J]. Energy Conversion and Management, 2021, 235: 114004
[15] SADEQ T, WAI C K, MORRIS E, et al. Optimal control strategy to maximize the performance of hybrid energy storage system for electric vehicle considering topography information[J]. IEEE Access, 2020, 8: 216994-217007
[16] WANG L, WANG Y, LIU C, et al. A power distribution strategy for hybrid energy storage system using adaptive model predictive control[J]. IEEE Trans on Power Electronics, 2020, 35(6): 5897-5906
[17] ZHAI C, LUO F, LIU Y. A novel predictive energy management strategy for electric vehicles based on velocity prediction[J]. IEEE Trans on Vehicular Technology, 2020, 69(11): 12559-12569
[18] KAI Y K, RAJENDRAN P. Differential-evolution control parameter optimization for unmanned aerial vehicle path planning[J]. Plos One, 2016, 11(3): e0150558
[19] MORADI M H, ABEDINI M, TOUSI S, et al. Optimal siting and sizing of renewable energy sources and charging stations simultaneously based on differential evolution algorithm[J]. International Journal of Electrical Power & Energy Systems, 2015, 73: 1015-1024