论文:2022,Vol:40,Issue(4):865-874
引用本文:
畅田田, 王威, 高婧洁, 申晓红, 姜苏英, 谢景丽. 基于信道测量实验的NLOS误差消除方法对比研究[J]. 西北工业大学学报
CHANG Tiantian, WANG Wei, GAO Jingjie, SHEN Xiaohong, JIANG Suying, XIE Jingli. A comparative study on NLOS error elimination methods based on channel measurement experiment[J]. Northwestern polytechnical university

基于信道测量实验的NLOS误差消除方法对比研究
畅田田1, 王威1, 高婧洁1, 申晓红2, 姜苏英1, 谢景丽1
1. 长安大学 信息工程学院, 陕西 西安 710064;
2. 西北工业大学 航海学院, 陕西 西安 710072
摘要:
为了研究不同消除方法对无线电信号由非视距(NLOS)传播而产生的距离估计正偏误差的消除性能,基于信道状态信息(CSI)提取出均值、均方根延迟扩展、偏度、峰度、峰均比特征,并将其与基于到达时间(TOA)的对数估计距离相结合作为特征输入向量,通过建立高斯过程回归(GPR)、最小二乘支持向量机回归(LS-SVMR)与BP神经网络训练模型进行实验性能比较。对实际测量的典型室内环境中2.4~5.4 GHz的无线传播信道进行误差消除实验,比较不同输入特征、不同带宽和不同频带下的NLOS误差消除性能。实验结果表明:GPR模型表现出最好的NLOS误差消除性能,且所提取的CSI多特征作为输入向量可以将平均绝对误差(MAE)和均方根误差(RMSE)分别减小71.12%和81.36%;随着带宽不断增加,误差消除性能逐渐优化,即可通过增大带宽有效地改善输入特征较少时的NLOS定位误差;在多特征输入下,低频带的NLOS测距误差与高频带不同,因此将所有可用的频带结合可以比单频带更好地消除NLOS定位误差。
关键词:    非视距    信道状态信息    到达时间    最小二乘支持向量机回归    高斯过程回归    BP神经网络   
A comparative study on NLOS error elimination methods based on channel measurement experiment
CHANG Tiantian1, WANG Wei1, GAO Jingjie1, SHEN Xiaohong2, JIANG Suying1, XIE Jingli1
1. School of Information Engineering, Chang'an University, Xi'an 710064, China;
2 School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In order to study the performance of different elimination methods on the distance estimation forward error caused by the non-line-of-sight (NLOS) propagation of radio signals, this paper is based on the mean value, root mean square delay spread, skewness, kurtosis and peak-to-average ratio extracted from the channel state information (CSI), and combine it with the logarithmic estimated distance based on the time of arrival (TOA) as the feature input vector, through the establishment of Gaussian process regression (GPR), least square support vector machine regression (LS-SVMR) and BP neural network training model for experimental performance comparison. Through the actual measurement of the 2.4 to 5.4 GHz wireless propagation channel in the typical indoor environment, the error elimination experiment is carried out to compare the NLOS error elimination performance under different input characteristics, different bandwidths and different frequency bands. The experimental results show that the GPR model has the best NLOS error elimination performance, and the extracted CSI multi-features as the input of the GPR model can reduce the average absolute error and root mean square error by 71.12% and 81.36%, respectively. As the bandwidth continues to increase, the error elimination performance is gradually optimized. By increasing the bandwidth, the NLOS positioning error when the input features are less can be effectively improved. The positioning error of the low frequency band is smaller than that of the high frequency band under the multi-features, so the combination of all available frequency bands can eliminate the NLOS positioning error better than a single frequency band.
Key words:    non-line-of-sight    channel state features    time of arrival    least squares-support vector machine regression    gaussian process regression    BP neural network   
收稿日期: 2021-09-23     修回日期:
DOI: 10.1051/jnwpu/20224040865
基金项目: 国家自然科学基金(61871059,61901057)资助
通讯作者: 高婧洁(1988-),女,长安大学讲师,主要从事基于无线传感器网络的通信、定位及导航研究。e-mail:gaojingj@chd.edu.cn     Email:gaojingj@chd.edu.cn
作者简介: 畅田田(1996-),女,长安大学硕士研究生,主要从事无线电波传播和定位导航研究。
相关功能
PDF(2920KB) Free
打印本文
把本文推荐给朋友
作者相关文章
畅田田  在本刊中的所有文章
王威  在本刊中的所有文章
高婧洁  在本刊中的所有文章
申晓红  在本刊中的所有文章
姜苏英  在本刊中的所有文章
谢景丽  在本刊中的所有文章

参考文献:
[1] FERREIRA A G, FERNANDES D , BRANCO S, et al. Feature selection for real-time nlos identification and mitigation for body-mounted uwb transceivers[J]. IEEE Trans on Instrumentation and Measurement, 2021, 70(1): 1-10
[2] YU K, WEN K, LI Y, et al. A novel NLOS mitigation algorithm for UWB localization in harsh indoor environments[J]. IEEE Trans on Vehicular Technology, 2019, 68(1): 686-699
[3] WU S, ZHANG S, HUANG D. A TOA-based localization algorithm with simultaneous nlos mitigation and synchronization error elimination[J]. IEEE Sensors Letters, 2019, 3(3): 1-4
[4] KATWE M, GHARE P, SHARMA P K, et al. NLOS error mitigation in hybrid RSS-TOA-based localization through semi-definite relaxation[J]. IEEE Communications Letters, 2020, 24(12): 2761-2765
[5] XIAO Z, WEN H, MARKHAM A, et al. Non-line-of-sight Identification and mitigation using received signal strength[J]. IEEE Trans on Wireless Communications, 2015, 14(3): 1689-1702
[6] WU C, HOU H, WANG W, et al. TDOA based indoor positioning with nlos identification by machine learning[C]//2018 10th International Conference on Wireless Communications and Signal Processing, 2018: 1-6
[7] CHITAMBIRA B, ARMOUR S, WALES S, et al. Direct localisation using ray-tracing and least-squares support vector machines[C]//8th International Conference on Localization and GNSS, 2018: 1-5
[8] LI S, SONG B, LUO K. NLOS mitigation for UWB localization based on machine learning fusion method[C]//2019 IEEE Symposium Series on Computational Intelligence, 2019: 1048-1055
[9] YANG X F. NLOS mitigation for UWB localization based on sparse pseudo-input gaussian process[J]. IEEE Sensors Journal, 2018, 18(10): 4311-4316
[10] SILVA B, HANCKE G P. Ranging error mitigation for through-the-wall non-line-of-sight conditions[J]. IEEE Trans on Industrial Informatics, 2020, 16(11): 6903-6911
[11] TIAN Q, WANG K I, SALCIC Z. Human body shadowing effect on UWB-Based ranging system for pedestrian tracking[J]. IEEE Trans on Instrumentation and Measurement, 2019, 68(10): 4028-4037
[12] CHITAMBIRA B, ARMOUR S, WALES S,et al. NLOS identification and mitigation for geolocation using least-squares support vector machines[C]//2017 IEEE Wireless Communications and Networking Conference, San Francisco, 2017: 1-6
[13] 田春元, 余江, 常俊, 等. NWI:基于CSI的非视距信号识别方法[J]. 计算机科学, 2020, 47(11): 327-332 TIAN Chunyuan, YU Jiang, CHANG Jun, et al. NWI: CSI-based non-line-of-sight signal identification method[J]. Computer Science, 2020, 47(11): 327-332 (in Chinese)
[14] CHOI J S, LEE W H, LEE J H, et al. Deep learning based NLOS identification with commodity WLAN devices[J]. IEEE Trans on Vehicular Technology, 2018, 67(4): 3295-3303
[15] ZENG H, XIE R, XU R, et al. A novel approach to NLOS identification for UWB positioning based on kernel learning [C]//2019 IEEE 19th International Conference on Communication Technology, Xi'an, 2019: 451-455
[16] NAM S C, CHOI H B, KO Y B. On mitigation of ranging errors for through-the-body NLOS conditions using convolutional neural networks[C]//2021 23rd International Conference on Advanced Communication Technology, 2021: 141-144
[17] DONG M Y. A low-cost NLOS identification and mitigation method for UWB ranging in static and dynamic environments [J]. IEEE Communications Letters, 2021, 1(1): 2420-2424
[18] CHITAMBIRA B, ARMOUR S, WALES S, et al. NLOS identification and mitigation for geolocation using least-squares support vector machines[C]//IEEE Wireless Communications and Networking Conference, 2017: 1-6
[19] MUSA A, NUGRAHA G D, HAN H, et al. A decision tree-based NLOS detection method for the UWB indoor location tracking accuracy improvement[J]. International Journal of Communication Systems, 2019, 32(13): 1-13
[20] CAO Y, ZHANG L H, Data fusion of heterogeneous network based on BP neural network and improved SEP[C]//2017 9th International Conference on Advanced Infocomm Technology, Chengdu, 2017: 138-142
[21] BREGAR K, MOHORCIC M, Improving indoor localization using convolutional neural networks on computationally restricted devices[J]. IEEE Access, 2018, 6(1): 17429-17441
[22] SILVA B, HANCKE G P. Ranging error mitigation for through-the-wall non-line-of-sight conditions [J]. IEEE Trans on Industrial Informatics, 2020, 16(11): 6903-6911
[23] SRIDHAR B, ALI KHAN M Z. RMSE comparison of path loss models for UHF/VHF bands in India [C]//2014 IEEE Region 10 Symposium, Kuala Lumpur, 2014: 330-335
[24] WANG T, HU K K, LI Z H, et al. A semi-supervised learning approach for UWB ranging error mitigation[J]. IEEE Wireless Communications Letters, 2021, 10(3): 688-691