论文:2022,Vol:40,Issue(4):819-828
引用本文:
马跃, 何勇, 王传婷, 何源, 郭磊. 爆轰加载下双层钨破片的响应行为研究[J]. 西北工业大学学报
MA Yue, HE Yong, WANG Chuanting, HE Yuan, GUO Lei. Response behavior of double layer tungsten fragments under detonation loading[J]. Northwestern polytechnical university

爆轰加载下双层钨破片的响应行为研究
马跃, 何勇, 王传婷, 何源, 郭磊
南京理工大学 智能弹药技术国防重点学科实验室, 江苏 南京 210094
摘要:
在爆轰加载下,战斗部中的预制破片会产生很大的变形甚至破碎。为了对其变形模式进行探索,对圆柱战斗部下,双层球形钨合金破片在爆轰加载下的动态响应行为进行了研究。对典型的圆柱战斗部模型进行了数值模拟。特征段的仿真模型仅包括在轴向上的双列破片1/4模型,其目的是获得破片在爆轰加载下的变形响应;全尺寸1/4仿真模型则是为了获得破片在轴向的速度分布情况。其中,特征段仿真以装药直径为变量,对5个装药尺寸进行模拟,得到了其破片变形规律。为了验证仿真情况的准确性,对400 mm口径装药战斗部进行了试验验证,试验中测得了破片的飞行速度。通过软回收获得了部分经爆轰加载后已经产生变形的破片,并对其截面组织进行扫描电镜分析。研究结果表明,双层球形钨合金破片在内部爆炸载荷作用下,内层变形更为严重,其原因是同时受到内部爆炸载荷和外层破片的挤压作用。内外层破片的最终飞散速度趋于一致,并没有明显的分布差距。
关键词:    爆轰加载    破片驱动    动态响应    数值模拟   
Response behavior of double layer tungsten fragments under detonation loading
MA Yue, HE Yong, WANG Chuanting, HE Yuan, GUO Lei
ZNDY Ministerial Key Laboratory, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:
Under detonation loading, the prefabricated fragments in the warhead will be greatly deformed and even broken. In order to explore the model of deformation, the dynamic response of double-layer spherical tungsten fragments under detonation loading was studied. Firstly, a typical cylindrical warhead model was numerically simulated. The simulation model for the characteristic section only includes the quarter model for the double row fragments in the axial direction, in order to obtain the deformation response of the fragments under the detonation loading. The full-size 1/4 simulation model is designed to obtain the axial velocity distribution of the fragment. In the characteristic section, the charge diameter was used as the variable to simulate five charge sizes, and the fragment deformation law was obtained. In order to verify the correctness of the simulation, the warhead of 400 mm caliber was tested, and the flight speed of the fragment was measured. Some deformed fragments were obtained by soft recovery and their cross-section microstructure were analyzed by scanning electron microscope (SEM). The results show that the deformation of the inner layer of the double-layer spherical tungsten alloy fragment is more serious under the action of the internal explosion load, because it is squeezed by the internal explosion load and the outer layer fragment at the same time. The final dispersion velocities of the inner and outer fragments tend to be the same, and there is no significant difference in the distribution of fragments.
Key words:    detonation loading    fragment driving    dynamic response    numerical simulation   
收稿日期: 2021-09-27     修回日期:
DOI: 10.1051/jnwpu/20224040819
通讯作者: 何勇(1964-),南京理工大学教授、博士,主要从事新概念毁伤及飞行器设计研究。e-mail:yonghe1964@163.com     Email:yonghe1964@163.com
作者简介: 马跃(1994-),南京理工大学博士研究生,主要从事金属材料在爆轰冲击下的力学响应研究。
相关功能
PDF(4564KB) Free
打印本文
把本文推荐给朋友
作者相关文章
马跃  在本刊中的所有文章
何勇  在本刊中的所有文章
王传婷  在本刊中的所有文章
何源  在本刊中的所有文章
郭磊  在本刊中的所有文章

参考文献:
[1] 印立魁, 蒋建伟. 多层球形预制破片战斗部破片初速场的计算模型[J]. 含能材料, 2014, 22(3): 300-305 YIN Likui, JIANG Jianwei. Calculation model of initial velocity field on multi-layered spherical fragments warhead[J]. Chinese Journal of Energetic Materials, 2014, 22(3): 300-305 (in Chinese)
[2] 印立魁, 蒋建伟, 门建兵,等. 立方体预制破片战斗部破片初速计算模型[J]. 兵工学报, 2014, 12: 1967-1971 YIN Likui, JIANG Jianwei, MEN Jianbing, et al. An initial velocity model of explosively-driven cubical fragments[J]. Acta Armamentarii, 2014, 12: 1967-1971 (in Chinese)
[3] 时党勇, 张庆明, 夏长富. 多层预制破片战斗部数值模拟方法及起爆方式影响[J]. 解放军理工大学学报, 2009, 10(6): 553-558 SHI Dangyong, ZHANG Qingming, XIA Changfu. Numerical simulation method and different initiation modes for prefabricated multilayer fragment warhead[J]. Journal of PLA University of Science and Technology, 2009, 10(6): 553-558 (in Chinese)
[4] 李卫平, 孙红, 张海丰. 基于ALE方法的预制破片战斗部数值研究[J]. 弹箭与制导学报,2012,32(6): 93-95 LI Weiping, SUN Hong, ZHANG Haifeng. Numerical simulation of prefabricated-fragment warheads exploding based on ALE method[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(6): 93-95 (in Chinese)
[5] 武敬博, 苟瑞君, 郑俊杰, 等. 六棱柱形战斗部预制破片驱动的数值模拟与试验[J]. 火炸药学报,2016,39(3): 89-94 WU Jingbo, GOU Ruijun, ZHENG Junjie, et al. Numerical simulation and experiment of premade fragments droved by hexagonal prism shaped warhead[J]. Chinese Journal of Explosives & Propellants, 2016, 39(3): 89-94 (in Chinese)
[6] 李茂, 高圣智, 侯海量, 等. 圆柱形装药驱动轴向预制破片飞散特性[J]. 国防科技大学学报, 2021, 43(2): 141-147 LI Mao, GAO Shengzhi, HOU Hailiang, et al. Projection characteristics of axial prefabricated fragments driven by cylindrical charge[J]. Journal of National University of Defense Technology, 2021,43(2): 141-147 (in Chinese)
[7] 谭多望, 曹仁义, 王广军, 等. 爆轰驱动对钨珠终点弹道性能的影响[J]. 爆炸与冲击, 2008, 28(6): 481-487 TAN Duowang, CAO Renyi, WANG Guangjun, et al. Influence of detonation driving on terminal ballistic effects of tungsten spheres[J]. Explosion and Shock Waves, 2008, 28(6): 481-487 (in Chinese)
[8] 宫小泽, 郭涛, 刘飞. 爆后钨球的典型形变及其对初速推算的影响[J]. 兵器试验, 2015(6): 47-49 GONG Xiaoze, GUO Tao, LIU Fei. Typical deformation of tungsten sphere after detonation and its influence on estimation of muzzle velocity[J]. Weapon Test, 2015(6): 47-49 (in Chinese)
[9] DHOTE K D, MURTHY K P S, RAJAN K M, et al. Dynamics of multi layered fragment separation by explosion[J]. International Journal of Impact Engineering, 2015, 75: 194-202
[10] 宋玉江, 周涛, 沈飞, 等. 双层预制破片爆轰驱动早期行为研究[J]. 火炸药学报,2018,41(3): 308-313 SONG Yujiang, ZHOU Tao, SHEN Fei, et al. Research on the behavior of initial stage about explosively-driven double-layered premade fragments[J]. Chinese Journal of Explosives & Propellants, 2018, 41(3): 308-313 (in Chinese)
[11] 沈飞, 王辉, 袁建飞, 等. 铝含量对RDX基含铝炸药驱动能力的影响[J]. 火炸药学报,2013,36(3): 50-53 SHEN Fei, WANG Hui, YUAN Jianfei, et al. Influence of Al content on the driving ability of RDX-based aluminized explosives[J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 50-53 (in Chinese)
[12] 杨相礼, 何勇, 何源. 圆柱形预制破片爆炸驱动仿真研究[J]. 兵工自动化, 2016, 35(8): 9-12 YANG Xiangli, HE Yong, HE Yuan. Numerical simulation of cylindrical prefabricated fragment under explosive-driven process[J]. Ordnance Industry Automation, 2016, 35(8): 9-12 (in Chinese)
[13] 白金泽. LS-DYNA3D理论基础与实例分析[M]. 北京: 科学出版社, 2005 BAI Jinze. Theoretical basis and case analysis of LS-DYNA3D[M]. Beijing: Science Press, 2005 (in Chinese)
[14] Livermore Software Technology Corporation. LS-DYNA 971 R6.1.0 Keyword Manual Vol II[EB/OL]. (2012-08-24)[2021-08-11]. https://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna_vol_ii_r6.1.0/view
[15] 张虎生, 张宝平, 张庆明, 等. 飞鞭式多功能爆炸反应装甲防护性能的动态有限元分析[C]//全国爆炸力学学术会议, 昆明, 2003 ZHANG Husheng, ZHANG Baoping, ZHANG Qingming, et al. Dynamic finite element analysis of protective performance of fly-whip multi-function explosive reactive armor[C]//National Conference on Explosion Mechanics, Kunming, 2003 (in Chinese)
[16] WU J, LIU J, DU Y. Experimental and numerical study on the flight and penetration properties of explosively-formed projectile[J]. International Journal of Impact Engineering, 2007, 34(7), 1147-1162
[17] 叶小军. 数值模拟分析在选取战斗部缓冲材料时的应用[J]. 微电子学与计算机, 2009, 26(4): 226-229 YE Xiaojun. Numerical simulation of the selected warhead's cushion materials of application[J]. Microelectronics & Computer, 2009, 26(4): 226-229 (in Chinese)
[18] 王帅, 智小琦, 贾秋琳, 等. 基于mass_flux法的炸药火烧试验与数值仿真[J]. 兵器装备工程学报, 2020,41(8): 1-6 WANG Shuai, ZHI Xiaoqi, JIA Qiulin, et al. Experiment and numerical simulation of explosive firing based on mass_flux method[J]. Journal of Ordnance Equipment Engineering, 2020, 41(8): 1-6 (in Chinese)
[19] LIANG M Z, LI X Y, LU F Y. Improved method used to investigate the dynamic shear failure of AISI 1045 steel cylinder under blast loading[J]. International Journal of Applied Mechanics, 2016, 8: 165003
[20] O'DONOGHUE P E, PREDEBON W W, ANDERSON C E. Dynamic launch process of performed fragments[J]. Journal of Applied Physics, 1988, 63(2): 337-348
[21] ANDERSON C E, O'DONOGHUE P E, BODNER S R. Fracture of cubical tungsten specimens under explosive loading[J]. International Journal of Impact Engineering, 1988, 7(4): 371-377
[22] QI R, LANGDON G S, CLOETE T J, et al, Behavior of a blast-driven ball bearing embedded in rear detonated cylindrical explosive[J]. International Journal of Impact Engineering, 2020, 146: 103698