论文:2022,Vol:40,Issue(4):778-786
引用本文:
刘乾, 刘汉儒, 李家辉, 尚珣, 陈南树, 王掩刚. 基于面元-涡粒子法的螺旋桨气动特性及噪声研究[J]. 西北工业大学学报
LIU Qian, LIU Hanru, LI Jiahui, SHANG Xun, CHEN Nanshu, WANG Yangang. Research on aerodynamics and aeroacoustics of propeller based on panel-vortex particle method[J]. Northwestern polytechnical university

基于面元-涡粒子法的螺旋桨气动特性及噪声研究
刘乾1,2, 刘汉儒1,2, 李家辉1, 尚珣1, 陈南树1, 王掩刚1
1. 西北工业大学 动力与能源学院, 陕西 西安 710072;
2. 中国空气动力研究发展中心 气动噪声控制重点实验室, 四川 绵阳 621000
摘要:
为了满足叶轮机械的高效非定常气动仿真需求,发展了耦合面元-涡粒子法和Lowson自由远场声学模型的气动声学快速方法,并应用于某型螺旋桨气动特性和噪声特性的预测研究。气动计算结果表明:与有限体积法(finite volume method,FVM)相比,使用面元-涡粒子法(panel-vortex particle method,PVM)可以获得一致的叶表压力分布、下游尾迹速度分布和推力;相比于二阶的有限体积法,面元-涡粒子法的尾迹涡量数值耗散更低,尾涡附近速度梯度变化更明显。声学计算结果表明:与有限体积法结合Lowson模型的声学结果相比,使用面元-涡粒子法与Lowson模型结合可以解出相近的声压级指向性结果,在声场特征指向位置处(桨盘前轴向夹角60°位置)1BPF(blade passing frequency)下声压级幅值相对误差仅为5%,能满足声学分析需求。在计算耗时方面,面元-涡粒子法求解速度比有限体积法高出一个量级,证实发展的方法能满足分布式电推进系统动力叶轮机械的非定常气动特性和噪声性能的高效预测评估。
关键词:    面元法    涡粒子法    螺旋桨    非定常气动    气动噪声   
Research on aerodynamics and aeroacoustics of propeller based on panel-vortex particle method
LIU Qian1,2, LIU Hanru1,2, LI Jiahui1, SHANG Xun1, CHEN Nanshu1, WANG Yangang1
1. School of Power and Energy, Northwestern Ploytechnical University, Xi'an 710072, China;
2. Laboratory of Aerodynamic Noise Control, China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract:
The highly-efficient and unsteady aerodynamic simulation of turbomachinery is urgently required. The panel-vortex particle method is coupled with a far free field sound model established with the Lowson method and aims to fast predict aerodynamic and acoustic properties. The aerodynamic results show that, compared with the aerodynamic results acquired with the finite volume method, the use of the panel-vortex particle method may obtain appropriate pressure distribution and velocity distribution in the downstream region of a propeller and that the overall thrust prediction is accurate enough. The vortex distribution features show that the panel-vortex particle method has less numerical diffusion. Therefore, the velocity gradient is more accurate near the wake vortex. Compared with the sound pressure level acquired with the finite volume method, the sound pressure level simulated with the panel-vortex particle method has the same directivity pattern. The relative error of sound pressure in the 60° forward direction is 5% under 1BPF(blade passing frequency), which satisfies acoustic analysis requirements. As for time consumption, the use of the panel-vortex particle method consumes 10% of time when the finite volume method is used, proving that the panel-vortex particle method coupled with the Lowson method can satisfy the design and application needs of unsteady aerodynamic and aeroacoustic noise of a distributed electric propulsion system.
Key words:    panel-vortex particle method    propeller    unsteady aerodynamics    aeroacoustic noise   
收稿日期: 2021-10-15     修回日期:
DOI: 10.1051/jnwpu/20224040778
基金项目: 气动噪声控制重点实验室开放课题(ANCL20210203)资助
通讯作者: 刘汉儒(1985-),西北工业大学副教授,主要从事叶轮机械气动噪声及多学科优化研究。e-mail:hrliu@nwpu.edu.cn     Email:hrliu@nwpu.edu.cn
作者简介: 刘乾(1996-),西北工业大学博士研究生,主要从事叶轮机械设计及降维计算方法研究。
相关功能
PDF(3740KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘乾  在本刊中的所有文章
刘汉儒  在本刊中的所有文章
李家辉  在本刊中的所有文章
尚珣  在本刊中的所有文章
陈南树  在本刊中的所有文章
王掩刚  在本刊中的所有文章

参考文献:
[1] 张小伟. 面向2030年的分布式混合电推进技术[C]//2015第二届中国航空科学技术大会. 北京, 2015: 330-334 ZHANG Xiaowei. Distributed electric propulsion technology oriented to 2030[C]//The 2nd China Aeronautical Science and Technology Conference, Beijing, 2015: 330-334 (in Chinese)
[2] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1):57-68 HUANG Jun, YANG Fengtian. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 37(1): 57-68 (in Chinese)
[3] 乔渭阳. 航空发动机气动声学[M]. 北京:北京航空航天大学出版社, 2010 QIAO Weiyang. Aero-engine aeroacoustics[M]. Beijing: Beihang University Press, 2010 (in Chinese)
[4] 辛公正, 丁恩宝, 唐登海. 对转螺旋桨升力面设计方法[J]. 船舶力学, 2006, 10(2):40-46 XIN Gongzheng, DING Enbao, TANG Denghai. A design method for contra-rotating propeller by lifting-surface method[J]. Journal of Ship Mechanics, 2006, 10(2): 40-46 (in Chinese)
[5] 刘小龙, 唐登海, 侯樱. 对转桨定常面元法水动力性能预估[J]. 中国造船, 2009, 50(3): 1-8 LIU Xiaolong, TANG Denghai, HOU Ying. Prediction of steady performance of contra-rotating propellers by potential based panel method[J]. Shipbuilding of China, 2009, 50(3): 1-8 (in Chinese)
[6] KINNAS S. A nonlinear boundary element method for the analysis of unsteady propeller sheet cavitation[C]//Nineteenth Symposium on Naval Hydrodynamics, Seoul, Korea, 1992: 717-737
[7] BALTAZAR J, CAMPOS J A C F D, BOSSCHERS J. Open-water thrust and torque predictions of a ducted propeller system with a panel method[J]. International Journal of Rotating Machinery, 2012(1): 474785
[8] LEONARD A. Vortex methods for flow simulation[J]. Journal of Computational Physics, 1980, 37(3):289-335
[9] ANDERSON C, GREENGARD C. On vortex methods[J]. SIAM Journal on Numerical Analysis, 1985, 22(3):413-440
[10] 谭剑锋, 王浩文, 吴超, 等. 基于非定常面元/黏性涡粒子混合法的旋翼/平尾非定常气动干扰[J]. 航空学报, 2014, 35(3): 643-656 TAN Jianfeng, WANG Haowen, WU Chao, et al. Rotor/empennage unsteady aerodynamic interaction with unsteady panel/viscous vortex particle hybrid method [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 643-656 (in Chinese)
[11] WILLIS D J, PERAIRE J, WHITE J K. A combined pFFT-multipole tree code, unsteady panel method with vortex particle wakes[J]. International Journal for Numerical Methods in Fluids, 2010, 53(8): 1399-1422
[12] 胡昊, 宋小勇, 顾波, 等. 基于面元-黏性涡粒子混合法的风力机风轮气动计算[J]. 航空动力学报, 2015, 30(6): 1432-1439 HU Hao, SONG Xiaoyong, GU Bo, et al. Aerodynamic calculation of wind turbine wheel based on hybrid panel viscous-vortex particle method[J]. Journal of Aerospace Power, 2015, 30(6): 1432-1439 (in Chinese)
[13] 邹汝红, 张俊彦, 孙勤, 等. 基于面元法的风力机翼型反设计[J]. 工程力学, 2014, 31(11): 198-203 ZOU Ruhong, ZHANG Junyan, SUN Qin, et al. Inverse design for wind turbine airfoil based on panel method[J]. Engineering Mechanics, 2014, 31(11): 198-203 (in Chinese)
[14] BARBA L A. Vortex method for computing high-Reynolds number flows: increased accuracy with a fully mesh-less formulation[D]. Pasadena: California Institute of Technology, 2004
[15] 封建湖, 聂玉峰, 王振海. 数值分析[M]. 西安: 西北工业大学出版社, 2006 FENG Jianhu, NIE Yufeng, WANG Zhenhai. Numerical analysis[M]. Xi'an: Northwestern Polytechnical University Press, 2006 (in Chinese)
[16] PLOUMHANS P, WINCKELMANS G S, SALMON J K, et al. Vortex methods for direct numerical simulation of three-dimensional buff body flows: application to the sphere at Re=300,500, and 1 000[J]. Journal of Computational Physics, 2002, 178(2): 427-463
[17] LOWSON M. Theoretical studies of compressor noise[M]. Washington: National Aeronautics and Space Administration, 1969
[18] KHELLADI S, KOUIDRI S, BAKIR F, et al. Predicting tonal noise from a high rotational speed centrifugal fan[J]. Journal of Sound and Vibration, 2008, 313(1): 113-133
[19] 赵寅宇. 基于CFD/黏性涡粒子法的旋翼桨-涡干扰噪声研究[D]. 南京:南京航空航天大学, 2018 ZHAO Yinyu. Research on helicopter rotor blade-vortexinteraction noise based on coupling CFD/viscous vortex particle method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese)
[20] 窦凤祥. 螺旋桨无空泡噪声的预报研究[D]. 哈尔滨:哈尔滨工程大学, 2013 DOU Fengxiang. Research on prediction for propeller non-cavitating noise[D]. Harbin: Harbin Engineering University, 2013 (in Chinese)