论文:2022,Vol:40,Issue(4):723-731
引用本文:
黄峻峰, 贺尔铭, 易金翔, 杜大华, 王红建. 再生冷却推力室热机疲劳寿命预测研究[J]. 西北工业大学学报
HUANG Junfeng, HE Erming, YI Jinxiang, DU Dahua, WANG Hongjian. Research on thermomechanical fatigue life prediction of regenerative cooling thrust chamber[J]. Northwestern polytechnical university

再生冷却推力室热机疲劳寿命预测研究
黄峻峰1, 贺尔铭1, 易金翔1, 杜大华2, 王红建1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 液体火箭发动机技术重点实验室, 陕西 西安 710100
摘要:
针对液体火箭发动机再生冷却推力室内壁结构多发的"狗窝"失效问题,仿真再现循环载荷下塑性应变累积的棘轮效应,并定量分析其对推力室内壁结构寿命的影响。对推力室内壁进行三维传热分析,在传热分析结果的基础上对该结构在循环载荷下的应力应变演化进行非线性平面应变有限元分析。根据有限元分析结果,对内壁结构的棘轮效应展开描述并计算棘轮损伤,分别使用Morrow修正模型、Norton蠕变模型计算其低周疲劳损伤及蠕变损伤。基于Miner线性累积损伤理论,提出了综合考虑棘轮损伤、低周疲劳损伤及蠕变损伤的推力室内壁结构寿命预估方法。结果表明:喉部附近内壁下表面中点处会最先失效破坏,推力室内壁结构使用寿命为33次;在导致该点的总损伤中,棘轮损伤、蠕变损伤和低周损伤分别占比52%、32%和16%,说明了棘轮效应是导致推力室结构失效的主要原因。所提研究方法对液体火箭发动机再生冷却推力室结构的寿命定量分析、优化设计及未来可重复使用火箭发动机设计提供重要的工程参考。
关键词:    再生冷却推力室    棘轮效应    寿命预测    低周疲劳    热机械疲劳   
Research on thermomechanical fatigue life prediction of regenerative cooling thrust chamber
HUANG Junfeng1, HE Erming1, YI Jinxiang1, DU Dahua2, WANG Hongjian1
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Science and Technology on Liquid Rocket Engines Laboratory, Xi'an 710100, China
Abstract:
The ratcheting effect of the liner wall structure in the thrust chamber of liquid rocket engine under cyclic load is studied, and its service life is predicted. Firstly, the 3-D heat transfer analysis of the wall of the thrust chamber is carried out while explaining the mechanism of its "dog room" failure. Based on the results of the heat transfer analysis, the stress-strain evolution of the structure under cyclic load is analyzed by nonlinear plane strain finite element method. According to the finite element analysis results, the ratcheting effect of the liner wall structure is described and the ratcheting damage is calculated. The low cycle fatigue damage is calculated by using modified Morrow model, and the creep damage is also calculated using Norton model. Finally, the total damage of thrust chamber liner wall is calculated by using Miner linear cumulative damage law and the thermomechanical fatigue life of the structure is estimated. The result shows that the middle point of the lower surface of the liner wall will fail first, and the calculated service life is 33 times, which is good agreement with its actual service life. In the total damage of the weak point, ratcheting damage, creep damage and low cycle fatigue damage account for 52%, 32% and 16% respectively, indicating that the ratcheting effect is the main reason for the failure of the thrust chamber structure. The research results of this paper provide important engineering reference for the structural optimization design and rapid life prediction of regenerative cooling thrust chamber of liquid rocket engine and the future reusable aerospace power.
Key words:    regenerative cooling thrust chamber    ratcheting effect    life prediction    low cycle fatigue    thermal mechanical fatigue   
收稿日期: 2021-10-27     修回日期:
DOI: 10.1051/jnwpu/20224040723
通讯作者: 贺尔铭(1964-),西北工业大学教授,主要从事飞机结构动力学与振动控制研究。e-mail:heerming@nwpu.edu.cn     Email:heerming@nwpu.edu.cn
作者简介: 黄峻峰(1997-),西北工业大学硕士研究生,主要从事结构动力学分析、力学仿真分析及试验研究。
相关功能
PDF(3853KB) Free
打印本文
把本文推荐给朋友
作者相关文章
黄峻峰  在本刊中的所有文章
贺尔铭  在本刊中的所有文章
易金翔  在本刊中的所有文章
杜大华  在本刊中的所有文章
王红建  在本刊中的所有文章

参考文献:
[1] 张绿云, 曲晶, 龙雪丹, 等. 2018年国外航天运载器发展分析[J]. 导弹与航天运载技术, 2019(1): 36-39 ZHANG Lüyun, QU Jing, LONG Xuedan, et al. Review of world launch vehicle in 2018[J]. Missiles and Space Vehicles, 2019(1): 36-39 (in Chinese)
[2] 朱坤, 杨铁成, 周宁. 从低成本角度探讨航天运载器技术发展路线[J]. 飞航导弹, 2021(6): 1-6 ZHU Kun, YANG Tiecheng, ZHOU Ning. Discussion on the development route of space vehicle technology from the perspective of low cost[J]. Aerodynamic Missile Journal, 2021(6): 1-6 (in Chinese)
[3] HELLMAN B M, BRADFORD J E, GERMAIN B D S, et al. Two stage to orbit conceptual vehicle designs using the SABRE engine[C]//AIAA SPACE 2016, 2016
[4] 赵国柱, 黄长梅, 康开华, 等. 2019年俄罗斯航天运载技术发展分析[J]. 飞航导弹, 2020(2): 1-5 ZHAO Guozhu, HUANG Changmei, KANG Kaihua, et al. Development analysis of russian space launch vehicle technology in 2019[J]. Aerodynamic Missile Journal, 2020(2): 1-5 (in Chinese)
[5] TAN Yonghua, ZHAO Jian, CHEN Jianhua, et al. Progress in technology of main liquid rocket engines of launch vehicles in China[J]. Aerospace China, 2020, 21(2): 23-30 (in Chinese)
[6] 郑孟伟, 岳文龙, 孙纪国, 等. 我国大推力氢氧发动机发展思考[J]. 宇航总体技术, 2019, 3(2): 12-17 ZHENG Mengwei, YUE Wenlong, SUN Jiguo, et al. Development of high-thrust hydrogen-oxygen engine in china[J]. Journal of Aerospace Engineering, 2019, 3(2): 12-17 (in Chinese)
[7] 李斌, 张小平, 高玉闪. 我国可重复使用液体火箭发动机发展的思考[J]. 火箭推进, 2017, 43(1): 7 LI Bin, ZHANG Xiaoping, GAO Yushan. Thinking on the development of reusable liquid rocket engine in China[J]. Journal of Rocket Propulsion, 2017, 43(1): 7 (in Chinese)
[8] 韩炜. 液体火箭发动机再生冷却推力室耦合传热的数值研究[D]. 哈尔滨:哈尔滨工程大学, 2017 HAN Wei. Numerical study on coupled heat transfer in regenerative cooling thrust chamber of liquid rocket engine[D]. Harbin: Harbin Engineering University, 2017 (in Chinese)
[9] 羽中豪, 金平, 蔡国飙. 可重复使用液体火箭发动机设计参数对推力室身部棘轮应变的影响[J]. 载人航天, 2018, 24(2): 8 YU Zhonghao, JIN Ping, CAI Guobiao. Influence of design parameters of reusable liquid rocket engine on ratchet strain of thrust chamber body[J]. Manned Space Flight, 2018, 24(2): 8 (in Chinese)
[10] 孙冰, 丁兆波, 康玉东. 液体火箭发动机推力室内壁寿命预估[J]. 航空动力学报, 2014, 29(12): 2980-2986 SUN Bing, DING Zhaobo, KANG Yudong. Life prediction of liquid rocket engine thrust chamber liner wall[J]. Journal of Aerospace Power, 2014, 29(12): 2980-2986 (in Chinese)
[11] 孙冰, 宋佳文. 液氧甲烷发动机台阶型冷却通道的耦合传热特性[J]. 航空动力学报, 2016, 31(12): 2972-2978 SUN Bing, SONG Jiawen. Coupled heat transfer characteristics of step cooling channel for liquid oxygen methane engine[J]. Journal of Aerospace Power, 2016, 31(12): 2972-2978 (in Chinese)
[12] 孙冰, 宋佳文. 液体火箭发动机推力室壁瞬态加载三维热结构分析[J]. 推进技术, 2016, 37(7): 1328-1333 SUN Bing, SONG Jiawen. Three-dimensional thermal structure analysis of liquid rocket engine thrust chamber wall under transient loading[J]. Journal of Propulsion Technology, 2016, 37(7): 1328-1333 (in Chinese)
[13] SONG Jiawen, SUN Bing. Thermal-structural analysis of regeneratively-cooled thrust chamber wall in reusable LOX/Methane rocket engines[J]. Chinese Journal of Aeronautics, 2017, 30(3): 1043-1053
[14] DI L A, BING S A, TW A, et al. Thermo-structural analysis of regenerative cooling thrust chamber cylinder segment based on experimental data[J]. Chinese Journal of Aeronautics, 2020, 33(1): 102-115
[15] PIZZARELLI M. Correction: an algebraic model for structural and life analysis of regeneratively-cooled thrust chambers[J]. Journal of Propulsion and Power, 2020, 36(6): 191-201
[16] RICCIUS J R, BTTCHER M W. A first step into the blanching modelling of liquid rocket engines: taking into account the roughness increase of the chamber wall[C]//AIAA Propulsion and Energy 2019 Forum, 2019
[17] ESPOSITO J J, ZABORA R F. Thrust chamber life prediction. Volume 1: mechanical and physical properties of high performance rocket nozzle materials[R]. NASA-CR-134806, 1975
[18] ELLIS D L, MICHAL G M. Mechanical and thermal properties of two Cu-Cr-Nb alloys and NARloy-Z[R]. NASA-CR-198529, 1996