论文:2022,Vol:40,Issue(4):717-722
引用本文:
周晓宸, 罗宇波, 薛璞, 陆建国. 大型民机襟翼间交联系统设计方法研究[J]. 西北工业大学学报
ZHOU Xiaochen, LUO Yubo, XUE Pu, LU Jianguo. Design method of interconnection struts between flaps of large transport aircraft[J]. Northwestern polytechnical university

大型民机襟翼间交联系统设计方法研究
周晓宸1,2, 罗宇波1, 薛璞1,2, 陆建国3
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 陕西省冲击动力学与工程应用重点实验室, 陕西 西安 710072;
3. 上海飞机设计研究院, 上海 201210
摘要:
襟翼间交联系统(ICS)是一种增强襟翼系统可靠性的冗余设计,在襟翼系统故障时对故障引起的破坏起到抑制作用。空客、波音自20世纪80年代以来针对A320、B737等大型民机已经设计了多种ICS并投入使用;而国内在ICS方面的研究较少,目前仍属起步阶段。大型民机是我国航空业下一步发展的重点之一,为了给我国大型民机襟翼系统设计提供技术支持,开展了襟翼间交联系统设计方法研究,提出了一种新的ICS设计,在此基础上研究了交联机构的2个主要设计参数:交联机构的临界位移和吸能元件的平均压溃载荷,并对其力学性能以及在襟翼系统的故障工况中对故障载荷的抑制作用进行了仿真,验证了ICS设计方法的有效性和合理性。
关键词:    襟翼系统    交联系统    脱开故障    抑制作用    多体动力学   
Design method of interconnection struts between flaps of large transport aircraft
ZHOU Xiaochen1,2, LUO Yubo1, XUE Pu1,2, LU Jianguo3
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Shaanxi Key Laboratory of Impact Dynamics and Engineering Application, Xi'an 710072, China;
3. Shanghai Aircraft Design and Research Institute, Shanghai 201210, China
Abstract:
In the design of the modern large transport aircraft, flap system has become a standard configuration, which can increase the maximum wing lift and the climb rate of the aircraft. Meanwhile, the reliability of the flap system has always been the focus point of the aviation industry. The interconnection strut between flaps is a kind of redundancy design, which mitigates the failure of flap system enhancing flap system reliability. Since 1980s, aircraft manufacturers such as Airbus and Boeing have designed many kinds of ICS for the large transport aircraft like A320, B737. Meanwhile, there is some study on ICS in China, which is still in its infancy. In this paper, the design method of ICS is studied, and the important design parameters of ICS are proposed. A new kind of ICS is designed, and the validity and rationality of ICS design are verified. Firstly, the multi-body dynamic model for the flap system is established and the working principle and important design parameters of ICS between flaps are studied; and then the energy absorbing characteristics of ICS energy absorbing elements are studied; finally, a new ICS is designed, and its mechanical properties and mitigation effect on flap system failure are simulated to verify the effectiveness and rationality of the design.
Key words:    flap system    ICS    actuator failure    mitigation effect    multibody dynamics   
收稿日期: 2021-10-09     修回日期:
DOI: 10.1051/jnwpu/20224040717
基金项目: 国家自然科学基金(12072288,11672248)资助
通讯作者: 薛璞(1957-),西北工业大学教授,主要从事结构动力学、飞机结构耐撞性研究。e-mail:p.xue@nwpu.edu.cn     Email:p.xue@nwpu.edu.cn
作者简介: 周晓宸(1997-),西北工业大学硕士研究生,主要从事结构动力学研究。
相关功能
PDF(2347KB) Free
打印本文
把本文推荐给朋友
作者相关文章
周晓宸  在本刊中的所有文章
罗宇波  在本刊中的所有文章
薛璞  在本刊中的所有文章
陆建国  在本刊中的所有文章

参考文献:
[1] GUELZAU H. Flexible multi-body modelling and simulation of flap systems in transport aircraft-determination of dynamics and failure loads[C]//MSC Software VPD Conference, Huntington Beach, CA, 2006
[2] LERCH M, THIELECKE F. Concepts for a safety device in conventional track-linkage kinematics to prevent skew in a single flap system[C]//Deutscher Luft-Und Raumfahrtkongress, 2017
[3] QI Wan. Study on the dynamic interaction of multiple clearance joints for flap actuation system with a modified contact force model[J]. Journal of Mechanical Science and Technology, 2020, 34(7): 2701-2713
[4] HUYNH N V. Distributed trailing edge wing flap systems in patent application approval process: the United States, US2020007-0959[P]. 2020-05-03
[5] 韩瑞美, 王立纲. 某型飞机襟翼系统典型故障研究[J]. 内燃机与配件, 2021(4): 141-142 HAN Ruimei, WANG Ligang. Typical faults of flap system of an aircraft[J]. Internal Combustion Engine & Parts, 2021(4): 141-142 (in Chinese)
[6] RUDOLPH P. High-lift systems on commercial subsonic airliners[R]. NASA-CR-4746, 1996
[7] BREEDVELD C A J, DE HAAN F W. Wing flap assembly and aircraft provided there with: the United States, US4494716[P]. 1985-01-22
[8] Poccard. System for coupling two flaps of an aircraft wing, and an aircraft wing equipped with such asystem: the United States, US4715567[P]. 1987-12-29
[9] KLAUS A. Damping element: German, DE3522449A1[P]. 1985-06-22
[10] KURT A. Failure protection device for flap systems on aircraft mainplanes: German,DE3505839C2[P]. 1989-11-09
[11] VERSLUIS S. Interconnecting strut for arranging between adjacent landing flaps of an aircraft: the United States,US8469165[P]. 2013-06-25
[12] POPPE B, AUHAGEN K. Flap interconnection system for aircraft: the United States,US7546984B2[P]. 2009-06-16
[13] 黄勇, 田忠良, 吴强,等. 内外襟翼交联装置: 中国, CN107161325B[P]. 2017-09-15 HUANG Yong, TIAN Zhongliang, WU Qiang, et al. The interconnection device between Inner and Outer flaps: China,CN107161325B[P]. 2017-09-15 (in Chinese)
[14] 黄勇. 民用飞机襟翼交联机构吸能仿真技术研究[J].民用飞机设计与研究,2020(4): 36-41 HUANG Yong. Energy absorption simulation technology of flap interconnection structure for civil aircraft[J]. Civil Aircraft Design and Research,2020(4): 36-41 (in Chinese)
[15] LIU Y, QIU X M. A theoretical study of the expansion metal tubes[J]. International Journal of Mechanical Sciences, 2016, 114: 157-165 (in Chinese)