论文:2022,Vol:40,Issue(3):636-644
引用本文:
徐琳, 代睿, 殷春武, 段中兴. 角速度有界的在轨抓捕航天器姿态控制[J]. 西北工业大学学报
XU Lin, DAI Rui, YIN Chunwu, DUAN Zhongxing. Attitude control of on-orbit capture spacecraft with angular velocity constraint[J]. Northwestern polytechnical university

角速度有界的在轨抓捕航天器姿态控制
徐琳1,2, 代睿1, 殷春武1, 段中兴1
1. 西安建筑科技大学 信息与控制工程学院, 陕西 西安 710055;
2. 西北工业大学 自动化学院, 陕西 西安 710129
摘要:
航天器在非合作目标的抓捕过程中,其姿态跟踪控制问题通常会受到角速度有界约束,对此提出了一种基于双环递归跟踪的自适应控制算法。根据抓捕过程中航天器转动惯量呈现出的非线性变化特性,利用线性回归算子将未知转动惯量矩阵转换成未知向量,并设计自适应律估计该向量。在系统设计时,外环采用有界虚拟角速度作为虚拟控制输入保证姿态的精确跟踪;内环基于障碍Lyapunov函数设计出包含转动惯量估计值的自适应控制律,理论证明了有界约束的角速度可对虚拟角速度实现快速精确跟踪,整个跟踪过程误差有界;然后通过数值仿真,分析非合作目标轨迹追踪的抓捕过程,结果表明所设计的算法具有较强的有效性和鲁棒性。
关键词:    航天器    非合作目标    姿态控制    角速度    双环控制   
Attitude control of on-orbit capture spacecraft with angular velocity constraint
XU Lin1,2, DAI Rui1, YIN Chunwu1, DUAN Zhongxing1
1. School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2. School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
Aiming at the attitude control problem of spacecraft in the capturing non-cooperative target process, a dual tracking robust adaptive attitude controller is designed. Firstly, a bounded virtual angular velocity is designed for the kinematics equations to guarantee that the attitude converges to zero quickly. Secondly, a new attitude controller is constructed based on the barrier Lyapunov function to ensure that the tracking error between virtual angular velocity and real angular velocity is bounded. The physical constraint of the angular velocity is satisfied. Applying Lyapunov's stability theory, the global asymptotic stability of the closed-loop system is analyzed. To overcome the nonlinear parameter perturbation with unknown upper bound in the process of capturing non-cooperative target, an adaptive updating law based on linear regression operator is constructed to estimate the rotational inertia on-line. Finally, the process of capturing the trajectory tracking of non-cooperative targets through numerical simulation. The simulation results demonstrate that the algorithm designed is effective and robust under the constraint of the bounded angular velocity or internal parameter perturbation with unknown upper bound.
Key words:    spacecraft    non-cooperative target    attitude control    angular velocity    dual-loop control   
收稿日期: 2021-09-14     修回日期:
DOI: 10.1051/jnwpu/20224030636
基金项目: 国家自然科学基金(62103316,61802393)资助
通讯作者: 殷春武(1982—),西安建筑科技大学副教授,主要从事机器人与智能系统研究。e-mail:13620865@qq.com     Email:13620865@qq.com
作者简介: 徐琳(1978—),西安建筑科技大学讲师、西北工业大学博士后,主要从事控制理论与控制工程应用研究。
相关功能
PDF(1948KB) Free
打印本文
把本文推荐给朋友
作者相关文章
徐琳  在本刊中的所有文章
代睿  在本刊中的所有文章
殷春武  在本刊中的所有文章
段中兴  在本刊中的所有文章

参考文献:
[1] BAI Y, BIGGS J D, WANG X, et al. A singular adaptive attitude control with active disturbance rejection[J]. European Journal of Control, 2017, 35(5): 50-56
[2] 冯昱澍, 刘昆, 冯健. 航天器姿态跟踪有限时间自适应积分滑模控制[J]. 电子科技大学学报, 2021,50(4): 527-534 FENG Yushu, LIU Kun, FENG Jian. Finite time adaptive integral sliding mode control method for spacecraft attitude tracking[J]. Journal of University of Electronic Science and Technology, 2021,50(4): 527-534 (in Chinese)
[3] 孙亮, 马佳鹏. 航天器输入受限的鲁棒自适应姿态跟踪控制[J]. 控制与决策, 2021, 36(9): 2297-2304 SUN Liang, MA Jiapeng. Robust adaptive attitude tracking control for spacecraft with input constraints[J]. Control and Decision, 2021, 36(9): 2297-2304 (in Chinese)
[4] YEH F K. Sliding-mode adaptive attitude controller design for spacecrafts with thrusters[J]. IET Control Theory and Applications, 2010, 4(7): 1254-1264
[5] 夏冬冬, 岳晓奎. 基于浸入与不变理论的航天器姿态跟踪自适应控制[J]. 航空学报, 2020, 41(2): 312-323 XIA Dongdong, YUE Xiaokui. Adaptive control of spacecraft attitude tracking based on immersion and invariance theory[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(2): 312-323 (in Chinese)
[6] 殷春武, 佟威, 何波. 基于极限学习机的有限时间自适应姿态控制[J]. 航天控制, 2018, 36(5): 30-36 YIN Chunwu, TONG Wei, HE Bo. Extreme learning machine-based finite-time adaptive attitude control[J]. Aerospace Control, 2018, 36(5): 30-36 (in Chinese)
[7] 康国华, 金晨迪, 郭玉洁. 基于深度学习的组合体航天器模型预测控制[J]. 宇航学报, 2019, 40(11): 1322-1331 KANG Guohua, JIN Chendi, GUO Yujie. Model predictive control of combined spacecraft based on deep learning[J]. Journal of Astronautics, 2019, 40(11): 1322-1331 (in Chinese)
[8] 周湛杰, 王新生, 王岩. 基于模糊自适应算法的航天器姿态控制[J]. 电机与控制学报, 2019, 23(2): 123-128 ZHOU Zhanjie, WANG Xinsheng, WANG Yan. Spacecraft attitude control based on fuzzy adaptive algorithm[J]. Journal of Motor and Control, 2019,23(2): 123-128 (in Chinese)
[9] 王靓玥, 郭延宁, 马广富, 等. 航天器姿态控制输入饱和问题综述[J]. 宇航学报, 2021, 42(1): 11-21 WANG Liangyue, GUO Yanning, MA Guangfu, et al. Overview of spacecraft attitude control input saturation[J]. Journal of Astronautics, 2021,42(1): 11-21 (in Chinese)
[10] FORBES J R. Attitude control with active actuator saturation prevention[J]. Acta Astronautica, 2015(107): 187-195
[11] 殷春武. 带微分观测器的双环姿态跟踪控制[J]. 北京理工大学学报, 2018, 38(10): 1073-1078 YIN Chunwu. Dual-loop attitude tracking control with differential observer[J]. Journal of Beijing University of Technology, 2018,38(10): 1073-1078 (in Chinese)
[12] ZHENG Z, SONG S. Autonomous attitude coordinated control for spacecraft formation with input constraint, model uncertainties, and external disturbances[J]. Chinese Journal of Aeronautics, 2014(3): 602-612
[13] ZHANG F, DUAN G R. Robust adaptive integrated translation and rotation control of a rigid spacecraft with control saturation and actuator misalignment[J]. Acta Astronautica, 2013(86): 167-187
[14] 殷春武, 侯明善, 褚渊博, 等. 物理约束下的反演自适应姿态控制[J]. 西北工业大学学报, 2016,34(2): 281-286 YIN Chunwu, HOU Mingshan, CHU Yuanbo, et al. Backstepping adaptive attitude control with physical constraints[J]. Journal of Northwestern Polytechnical University, 2016, 34(2): 281-286 (in Chinese)
[15] 胡庆雷, 李理. 考虑输入饱和与姿态角速度受限的航天器姿态抗退绕控制[J]. 航空学报, 2015, 36(4): 1259-1266 HU Qinglei, LI Li. Spacecraft attitude anti unwinding control considering input saturation and attitude angular velocity constraints[J]. Acta Aeronautica et Astronautic Sinica, 2015, 36(4): 1259-1266 (in Chinese)
[16] HU Q. Robust adaptive backsteeping attitude and vibration control with L-2 gain performance for flexible spacecraft under angular velocity constraint[J]. Journal of Sound and Vibration, 2009, 327(3): 285-298
[17] HU Q, LI B, ZHANG Y. Robust attitude control design for spacecraft under assigned velocity and control constraints[J]. ISA Transactions, 2013, 52(4): 480-493
[18] TEE K P, GE S S, TAY E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems[J]. Automatica, 2009, 45(4): 918-927
[19] XU J X, XU J. State-constrained iterative learning control for a class of MIMO systems[J]. IEEE Trans on Automatic Control, 2013, 58(5): 1322-1327
[20] TAO G. A simple alternative to the Barbalat lemma[J]. IEEE Trans on Automatic Control, 2013, 58(5): 1322-1327
相关文献:
1.王小龙, 孙冲, 方群, 李琪, 宋硕.基于干扰观测器的航天器编队抓捕控制方法[J]. 西北工业大学学报, 2021,39(5): 1012-1021
2.殷春武, 侯明善, 褚渊博, 余英.物理约束下的反演自适应姿态控制[J]. 西北工业大学学报, 2016,34(2): 281-286