论文:2022,Vol:40,Issue(3):576-583
引用本文:
赵荞荞, 张立川, 刘禄, 潘光. 水下仿生机器人集群节能关键技术综述[J]. 西北工业大学学报
ZHAO Qiaoqiao, ZHANG Lichuan, LIU Lu, PAN Guang. Review on energy-saving key technologies of underwater bionic robot swarm[J]. Northwestern polytechnical university

水下仿生机器人集群节能关键技术综述
赵荞荞, 张立川, 刘禄, 潘光
西北工业大学 航海学院, 陕西 西安 710072
摘要:
水下仿生机器人集群具有冗余性高、机动灵活、任务执行范围广等优势,可应用于水下环境信息收集、水下目标监测、资源勘探等领域。一直以来,能量消耗问题都是水下仿生机器人集群工程应用中重点关注的问题。大自然存在的生物集群运动现象启发了水下仿生机器人集群节能运动关键技术的研究,从水动力和集群控制角度,对水下仿生机器人集群节能关键技术的国内外研究现状进行了论述,涉及生物集群运动的节能机理、水下仿生机器人流场信息感知和集群协同控制,分析和总结了水下仿生机器人集群节能关键技术发展趋势。
关键词:    水下仿生机器人集群    生物集群节能机理    流场信息感知    集群控制   
Review on energy-saving key technologies of underwater bionic robot swarm
ZHAO Qiaoqiao, ZHANG Lichuan, LIU Lu, PAN Guang
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Underwater Bionic Robot swarm has the advantages of high redundancy, flexible mobility and wide range of task execution, which can be applied to underwater environment monitoring, underwater target monitoring, resource exploration and other fields. For a long time, the problem of energy consumption is the focus on the application of Underwater Bionic Robot swarm engineering. This article draws on the sports advantages of biological clusters, from the perspective of hydrodynamic analysis, summarizes the domestic and foreign research status of key energy-saving technologies of underwater bionic robot clusters. The main content includes a summary on the development status of the three key technologies of biological cluster movement energy saving mechanism, underwater bionic robot vortex field information perception and cluster cooperative control, and analysis and summary of the development trend of key energy-saving technologies of underwater bionic robot cluster.
Key words:    underwater bionic robot swarm    energy-saving mechanism of biological swarm    vortex field information sensing    cluster control   
收稿日期: 2021-08-31     修回日期:
DOI: 10.1051/jnwpu/20224030576
基金项目: 国家重点研发计划(2020YFB1313200)资助
通讯作者: 张立川(1982—),西北工业大学教授,主要从事水下航行器导航与控制研究。e-mail:zlc@nwpu.edu.cn     Email:zlc@nwpu.edu.cn
作者简介: 赵荞荞(1996—),女,西北工业大学硕士研究生,主要从事水下仿生机器人感知定位技术及水下仿生机器人集群编队控制研究。
相关功能
PDF(2016KB) Free
打印本文
把本文推荐给朋友
作者相关文章
赵荞荞  在本刊中的所有文章
张立川  在本刊中的所有文章
刘禄  在本刊中的所有文章
潘光  在本刊中的所有文章

参考文献:
[1] ZHU Y, TANG X. Overview of swarm intelligence[C]//2010 International Conference on Computer Application and System Modeling, 2010: 400-403
[2] TAMÁS Vicsek. Collective motion[J]. Physics Reports, 2012, 517(3/4): 71-140
[3] WEIHS D. Hydrodynamics of fish schooling[J]. Nature, 1973, 241: 290-291
[4] HEMELRIJK C, REID D, HILDENBRANDT H, et al. The increased efficiency of fish swimming in a school[J]. Fish and Fisheries, 2015, 16(3): 511-521
[5] FIELDS P A. Decreased swimming effort in groups of Pacific mackerel(scomber japonicus)[J]. American Society of Zoology, 1990, 30(4): 134A
[6] HERSKIN J, STEFFENSEN J F. Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds[J]. Journal of Fish Biology, 2010, 53(2): 366-376
[7] KILLEN S S, MARRAS S, STEFFENSEN J F, et al. Aerobic capacity influences the spatial position of individuals within fish schools[J]. Proceedings Biological of the Royal Society, 2012, 279(1727): 357-364
[8] HUANG Q, ZHANG D, PAN G. Computational model construction and analysis of the hydrodynamics of a rhinopter jovanica[J]. IEEE Aecess, 2020, 8: 30410-30420
[9] HE J, CAO Y, HUANG Q, et al. A new type of bionic manta ray robot[C]//Global Oceans 2020, Singapore, 2020: 1-6
[10] VERMA S, NOVATI G, KOUMOUTSAKOS P. Efficient collective swimming by harnessing vortices through deep reinforcement learning[J]. Proceedings of the National Academy of Sciences, 2018, 115(23): 5849-5854
[11] CHEN S Y, CHEN Y C, CHI K J, et al. The swimming patterns and energy-saving mechanism revealed from three fish in a school[J]. Ocean Engineering, 2016, 122(1): 22-31
[12] 高鹏骋, 黄桥高, 潘光, 等. 柔性扑翼水动力特性试验研究[J]. 华中科技大学学报, 2022, 50(1): 144-148 GAO Pengcheng, HUANG Qiaogao, PAN Guang, et al. Experimental study on hydrodynamic characteristics of flexible flapping wing[J]. Journal of Huazhong University of Science and Technology, 2022, 50(1): 144-148 (in Chinese)
[13] 邢城, 潘光, 黄桥高. 仿蝠鲼柔性潜水器翼型流场性能分析[J]. 数字海洋与水下攻防, 2020, 3(3): 265-270 XING Cheng, PAN Guang, HUANG Qiaogao. Performance analysis of airfoil flow field of manta ray like flexible submersible[J]. Digital Ocean and Underwater Attack and Defense, 2020, 3(3): 265-270 (in Chinese)
[14] GUIJIE L, ANYI W, XINBAO W, et al. A review of artificial lateral line in sensor fabrication and bionic applications for robot fish[J]. Applied Bionics and Biomechanics, 2016, 2016: 1-15
[15] 胡桥, 刘钰, 赵振轶, 等. 水下无人集群仿生人工侧线探测技术研究进展[J]. 水下无人系统学报, 2019, 27(2): 114-122 HU Qiao, LIU Yu, ZHAO Zhenyi, et al. Research progress of underwater unmanned cluster bionic artificial side line detection technology[J]. Journal of Underwater Unmanned Systems, 2019, 27(2): 114-122 (in Chinese)
[16] LIU G, WANG M, WANG A, et al. Research on flow field perception based on artificial lateral line sensor system[J]. Sensors, 2018, 18(3): 838
[17] ASADNIA M, KOTTAPALLI A G P, MIAO J, et al. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena[J]. Journal of the Royal Society Interface, 2015, 12(111): 322
[18] 张兴兴, 王伟, 陈世明, 等. 基于人工侧线的相邻仿生机器鱼感知研究[J]. 测控技术, 2016, 35(10): 33-37 ZHANG Xingxing, WANG Wei, CHEN Shiming, et al. Research on perception of adjacent bionic robotic fish based on artificial side line[J]. Measurement and Control Technology, 2016, 35(10): 33-37 (in Chinese)
[19] ZHENG X, WANG C, FAN R, et al. Artificial lateral line based local sensing between two adjacent robotic fish[J]. Bioinspiration & Biomimetics, 2017, 13(1): 016002
[20] ZHANG F, LAGOR F D, YEO D, et al. Distributed flow sensing for closed-loop speed control of a flexible fish robot[J]. Bioinspiration & Biomimetics, 2015, 10(6): 065001
[21] FREE B A, PALEY D. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street[J]. Bioinspiration & Biomimetics, 2018, 13(3): 035001
[22] IJSPEERT A J, CRESPI A, RYCZKO D, et al. From swimming to walking with a salamander robot driven by a spinal cord model[J]. Science, 2007, 315(5817): 1416-1420
[23] CAO Y, LU Y, CAI Y, et al. CGP-fuzzy-based control of a cownose-ray-like fish robot[J]. Industrial Robot, 2019, 461(6): 779-791
[24] LA SPINA G, SFAKIOTAKIS M, TSAKIRIS D P, et al. Polychaete-like undulatory robotic locomotion in unstructured substrates[J]. IEEE Trans on Robotics, 2007, 23(6): 1200-1212
[25] LOW K H. Mechatronics and buoyancy implementation of robotic fish swimming with modular fin mechanisms[J]. Journal of Systems and Control Engineering, 2007, 221(3): 295-309
[26] ROUT R, SUBUDHI B. A backstepping approach for the formation control of multiple autonomous underwater vehicles using a leader-follower strategy[J]. Journal of Marine Engineering & Technology, 2016, 15(1): 38-46
[27] DESAI J P, KUMAR V. Modeling and control of formations of nonholonomic mobile robots[J]. IEEE Trans on Robotics & Automation, 2002, 17(6): 905-908
[28] LEE G, CHWA D. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance[J]. Intelligent Service Robotics, 2017, 11: 127-138
[29] YOSHIOKA C, NAMERIKAWA T. Formation control of nonholonomic multi-vehicle systems based on virtual structure[J]. IFAC Proceedings Volumes, 2008, 41(2): 5149-5154
[30] JIA Y, WANG L. Leader-follower flocking of multiple robotic fish[J]. IEEE Trans on Mechatronics, 2015, 20(3): 1372-1383
[31] CUI R, GE S S. Leader-follower formation control of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2010, 37(17/18): 1491-1502
[32] 杨盼盼, 刘明雍, 雷小康, 等. 群集系统分群行为建模与控制研究进展[J]. 控制与决策, 2016(2): 193-206 YANG Panpan, LIU Mingyong, LEI Xiaokang, et al. Research progress on clustering behavior modeling and control of clustered systems[J]. Control and Decision Making, 2016(2): 193-206 (in Chinese)
[33] 刘明雍, 雷小康, 杨盼盼, 等. 基于信息耦合度的群集系统自组织分群方法[J]. 控制与决策, 2015(2): 271-276 LIU Mingyong, LEI Xiaokang, YANG Panpan, et al. Self organizing clustering method of cluster system based on information coupling[J]. Control and Decision Making, 2015(2): 271-276 (in Chinese)
[34] DING G, ZHU D, SUN B. Formation control and obstacle avoidance of multi-AUV for 3-D underwater environment[C]//Proceedings of the 33rd Chinese Control Conference, 2014: 8347-8352
[35] JIA Q, LI G. Formation control and obstacle avoidance algorithm of multiple autonomous underwater vehicles(AUVs) based on potential function and behavior rules[C]//2007 IEEE International Conference on Automation and Logistics, 2007: 569-573
[36] PANG S, LI Y, YI H. Joint formation control with obstacle avoidance of towfish and multiple autonomous underwater vehicles based on graph theory and the null-space-based method[J]. Sensors, 2019, 19(11): 2591
[37] LIANG X, MU X, HOU Y, et al. Energy efficiency formation optimization of a fleet of AUVs based on multi-island genetic algorithm[C]//36th Chinese Control Conference, 2017: 6681-6684
[38] LI L, NAGY M, GRAVING J M, et al. Vortex phase matching as a strategy for schooling in robots and in fish[J]. Nature Communications, 2020, 11(1): 1-9
[39] 付如彬, 李亮, 徐成, 等. 基于强化学习的仿生机器鱼节能研究[J]. 北京大学学报, 2019, 55(3): 12-17 FU Rubin, LI Liang, XU Cheng, et al. Research on energy saving of bionic robotic fish based on reinforcement learning[J]. Journal of Peking University, 2019, 55(3): 12-17 (in Chinese)
[40] SANTOS C D, CILDOZ M U, VIEIRA R P, et al. Nonlinear mapping for performance improvement and energy saving of underwater vehicles[J]. International Journal of Robust and Nonlinear Control, 2018, 28(18): 5811-5840