x/L=0处附近。角向偏心使齿面仅在一端边缘接触,最危险齿面RFFDP值均沿x方向增大,呈现"指数增长"趋势,在x/L=1处达到最大,且裂纹萌生位置发生在x/L=1处附近。同时,随着轴线不对中或角向偏心量的增大,齿面损伤现象更为明显,磨损疲劳寿命急剧下降。"/> x/L=0处附近。角向偏心使齿面仅在一端边缘接触,最危险齿面RFFDP值均沿x方向增大,呈现"指数增长"趋势,在x/L=1处达到最大,且裂纹萌生位置发生在x/L=1处附近。同时,随着轴线不对中或角向偏心量的增大,齿面损伤现象更为明显,磨损疲劳寿命急剧下降。" />
论文:2022,Vol:40,Issue(3):549-559
引用本文:
肖立, 徐颖强, 陈智勇, 孙谢文, 徐颢. 浮动渐开线花键微动损伤及磨损疲劳预测[J]. 西北工业大学学报
XIAO Li, XU Yingqiang, CHEN Zhiyong, SUN Xiewen, XU Hao. Prediction of fretting damage and wear fatigue of floating involute spline couplings[J]. Northwestern polytechnical university

浮动渐开线花键微动损伤及磨损疲劳预测
肖立, 徐颖强, 陈智勇, 孙谢文, 徐颢
西北工业大学 机电学院, 陕西 西安 710072
摘要:
通过建立浮动花键副有限元模型,分析了轴线不对中和角向偏心对花键齿面接触压力的分布影响,基于Ruiz微动损伤参数评估了轴线不对中和角向偏心对齿面微动损伤的影响,结合能量耗散模型和临界面SWT模型,建立了考虑磨损效应的浮动花键磨损疲劳损伤模型,分析了轴线不对中和角向偏心下齿面的微动疲劳累积损伤分布规律,并预测了浮动花键寿命。结果表明,轴线不对中使各齿面接触分布不均,最危险齿面沿x方向RFFDP值呈现"抛物线"状,即在齿面两端产生较为严重的微动损伤,且齿面裂纹萌生位置在x/L=0处附近。角向偏心使齿面仅在一端边缘接触,最危险齿面RFFDP值均沿x方向增大,呈现"指数增长"趋势,在x/L=1处达到最大,且裂纹萌生位置发生在x/L=1处附近。同时,随着轴线不对中或角向偏心量的增大,齿面损伤现象更为明显,磨损疲劳寿命急剧下降。
关键词:    浮动渐开线花键    微动磨损    疲劳    Ruiz损伤参数    接触压力   
Prediction of fretting damage and wear fatigue of floating involute spline couplings
XIAO Li, XU Yingqiang, CHEN Zhiyong, SUN Xiewen, XU Hao
School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In this paper, a finite element model of the floating spline pair is first established, and the distribution of the contact pressure on the tooth surface of the spline with the axis and angular misalignment is analyzed. Then, the effects of axial misalignment and angular eccentricity on tooth fretting damage were evaluated, based on Ruiz fretting damage parameters. Finally, a floating spline wear fatigue damage model considering the wear effect is established based on the energy dissipation and critical plane SWT model, and the fretting fatigue cumulative damage distribution and life of the tooth surface under axial and angular misalignment are analyzed and evaluated. The results show that the misalignment of the axis makes the contact pressure distribution of each tooth uneven, and the RFFDP value of the most dangerous tooth is parabolic along the x direction, that is, serious fretting damage may occur at both ends of the tooth surface, and the crack initiation position on the tooth occurs near x/L=0. The angular misalignment makes the tooth contact only at one end edge, and the RFFDP value of the most dangerous tooth increases along the x direction, showing an exponential growth trend, reaching the maximum at x/L=1, and the crack initiation position occurs at near x/L=1. With the increase of axis or angular misalignment, the damage phenomenon of the floating spline tooth surface becomes more obvious, and the wear-fatigue life decreases sharply.
Key words:    floating involute spline    fretting damage    Ruiz damage parameters    SWT    contact pressure   
收稿日期: 2021-07-18     修回日期:
DOI: 10.1051/jnwpu/20224030549
基金项目: 国家自然科学基金面上项目(51675427)与河南省科技攻关项目(212102210284,212102210588)资助
通讯作者: 徐颖强(1961—),西北工业大学教授,主要从事航空动力传动及摩擦学研究。e-mail:xuyngqng@nwpu.edu.cn     Email:xuyngqng@nwpu.edu.cn
作者简介: 肖立(1998—),西北工业大学博士研究生,主要从事航空传动件摩擦磨损研究。
相关功能
PDF(4483KB) Free
打印本文
把本文推荐给朋友
作者相关文章
肖立  在本刊中的所有文章
徐颖强  在本刊中的所有文章
陈智勇  在本刊中的所有文章
孙谢文  在本刊中的所有文章
徐颢  在本刊中的所有文章

参考文献:
[1] CURÀ F, MURA A. Theoretical and numerical evaluation of tilting moment in crowned teeth splined couplings[J]. Meccanica, 2018, 53(1): 413-424
[2] LEEN S B, HYDE T H, RATSIMBA C H H, et al. An investigation of the fatigue and fretting performance of a representative aero-engine spline coupling[J]. The Journal of Strain Analysis for Engineering Design, 2002, 37(6): 565-583
[3] LEEN S B, MCCOLL I R, RATSIMBA C H H, et al. Fatigue life prediction for a barrelled spline coupling under torque overload[J]. Journal of Aerospace Engineering, 2003, 217(3): 123-142
[4] WAVISH P M, HOUGHTON D, DING J, et al. A multiaxial fretting fatigue test for spline coupling contact[J]. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(4): 325-345
[5] DING J, SUM W S, SABESAN R, et al. Fretting fatigue predictions in a complex coupling[J]. International Journal of Fatigue, 2007, 29(7): 1229-1244
[6] 薛向珍, 王三民, 袁茹.渐开线花键副微动磨损疲劳寿命预估[J]. 哈尔滨工业大学学报, 2016, 48(1): 141-145 XUE Xiangzhen, WANG Sanmin, YUAN Ru. Fretting wear-fatigue predictions in a spline couplings[J]. Journal of Harbin Institute of Technology, 2016, 48(1): 141-145 (in Chinese)
[7] XUE X, HUO Q, HONG L. Fretting wear-fatigue life prediction for aero-engine's involute spline couplings based on abaqus[J]. Journal of Aerospace Engineering, 2019, 32(6):04019081
[8] 赵广,刘占生,叶建槐,等.转子-不对中花键联轴器系统动力学特性研究[J].振动与冲击,2009,28(3): 78-82 ZHAO Guang, LIU Zhansheng, YE Jianhuai, et al. Dynamic behavior of a rotor-misaligned spline coupling system[J]. Journal of Vibration and Shock, 2009, 28(3): 78-82 (in Chinese)
[9] MEDINA S, OLVER A V. An analysis of misaligned spline couplings[J]. Journal of Engineering Tribology, 2002, 216(5): 269-278
[10] HONG J, TALBOT D, KAHRAMAN A. Load distribution analysis of clearance-fit spline joints using finite elements[J]. Mechanism and Machine Theory, 2014, 74: 42-57
[11] CUFFARO V, CURÀ F, MURA A. Test rig for spline couplings working in misaligned conditions[J]. Journal of Tribology, 2014, 136(1): 1-7
[12] CURA F, MURA A, GRAVINA M. Load distribution in spline coupling teeth with parallel offset misalignment[J]. Journal of Mechanical Engineering Science, 2013, 227(10): 2195-2205
[13] CURÀ F, MURA A, ADAMO F. Fatigue damage in spline couplings: numerical simulations and experimental validation[J]. Procedia Structural Integrity, 2017, 5: 1326-1333
[14] QURESHI W, CURA F, MURA A. Prediction of fretting wear in aero-engine spline couplings made of 42CrMo4[J]. Journal of Mechanical Engineering Science, 2017, 231(24): 4684-4692
[15] 胡正根. 航空渐开线花键副微动损伤研究[D]. 南京: 南京航空航天大学,2013 HU Zhenggen. Research on fretting damage of aviation involute spline pair[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese)
[16] 陈元, 朱如鹏, 靳广虎. 航空渐开线花键副齿面摩擦功分析[J]. 机械传动,2015,39(8): 119-121 CHEN Yuan, ZHU Rupeng, JIN Guanghu. Friction work analysis on tooth surface of aviation involute spline pair[J]. Journal of Mechanical Transmission,2015, 39(8): 119-121 (in Chinese)
[17] 谭援强, 胡检发, 姜胜强, 等. 基于有限元法渐开线花键副不对中载荷分布研究[J]. 机械传动,2016,40(9): 110-113 TAN Yuanqiang, HU Jianfa, JIANG Shengqiang, et al. Research of misaligned load distribution of involute spline pair based on finite element method[J]. Journal of Mechanical Transmission, 2016, 40(9): 110-113 (in Chinese)
[18] 蒋理宽. 浮动渐开线花键副微动磨损研究[D]. 湘潭: 湘潭大学,2018 JIANG Likuan. Research on fretting wear of floating in-volute spline pair[D]. Xiangtan: Xiangtan University, 2018 (in Chinese)
[19] 谭援强, 蒋理宽, 姜胜强, 等. 渐开线花键副微动摩擦接触分析[J].机械工程学报,2018,54(7):123-130 TAN Yuanqiang, JIANG Likuan, JIANG Shengqiang, et al. The fretting frictional contact analysis of involute spline coupling[J]. Journal of Mechanical Engineering, 2018, 54(7): 123-130 (in Chinese)
[20] 胡娟娟, 胡检发, 谭援强, 等. 渐开线花键副齿廓修形研究[J]. 机械强度,2018, 40(1): 138-144 HU Juanjuan, HU Jianfa, TAN Yuanqiang, et al. Research on profile modification of involute spline coupling[J]. Mechanical Strength, 2018, 40(1): 138-144 (in Chinese)
[21] RUIZ C, BODDINGTON P H B, CHEN K C. An investigation of fatigue and fretting in a dovetail joint[J]. Experimental Mechanics, 1984, 24(3): 208-217
[22] VIDNER J, LEIDICH E. Enhanced Ruiz criterion for the evaluation of crack initiation in contact subjected to fretting fatigue[J]. International Journal of Fatigue, 2007, 29(9/10/11): 2040-2049
[23] ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8):981-988
[24] SAUGER E, FOUVRY S, PONSONNET L, et al. Tribologically transformed structure in fretting[J]. Wear, 2000, 245(1/2):39-52
[25] DING J, LEEN S B, WILLIAMS E J, et al. Finite element simulation of fretting wear-fatigue interaction in spline couplings[J]. Tribology-Materials, Surfaces & Interfaces, 2008, 2(1):10-24
[26] NIE H, LUAN S. Biaxial stress fatigue life prediction by the local strain method[J]. International Journal of Fatigue, 1997, 6(19): 517-522
[27] SHOKRIEH M M, TAHERI-BEHROOZ F. A unified fatigue life model based on energy method[J]. Composite Structures, 2006, 75(1/2/3/4): 444-450
[28] PAPADOPOULOS I V, DAVOLI P, GORLA C, et al. A comparative study of multiaxial high-cycle fatigue criteria for metals[J]. International Journal of Fatigue, 1997, 19(3): 219-235
[29] FATEMI A, SOCIE D F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(3): 149-165
[30] SMITH K N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5: 767-778
[31] RATSIMBA C H H, MCCOLL I R, WILLIAMS E J, et al. Measurement, analysis and prediction of fretting wear damage in a representative aeroengine spline coupling[J]. Wear, 2004, 257(11): 1193-1206
[32] MADGE J J, LEEN S B, MCCOLL I R, et al. Contact evolution based prediction of fretting fatigue life: effect of slip amplitude[J]. Wear, 2007, 262(9/10): 1159-1170