论文:2022,Vol:40,Issue(3):465-475
引用本文:
李筱暄, 付前刚, 胡逗. 碳/碳复合材料表面等离子喷涂高温抗氧化涂层研究进展[J]. 西北工业大学学报
LI Xiaoxuan, FU Qiangang, HU Dou. Review on plasma sprayed oxidation resistant coatings for C/C composites[J]. Northwestern polytechnical university

碳/碳复合材料表面等离子喷涂高温抗氧化涂层研究进展
李筱暄, 付前刚, 胡逗
西北工业大学 陕西省纤维增强轻质复合材料重点实验室, 陕西 西安 710072
摘要:
氧化敏感性是限制碳/碳(C/C)复合材料作为超高温结构材料应用于航空航天领域的关键瓶颈。表面涂层技术是目前在高温含氧环境下有望实现C/C复合材料长时稳定服役的最有效手段。其中,广泛应用于制备航空发动机热防护涂层的等离子喷涂技术备受关注。从C/C复合材料表面等离子喷涂高温抗氧化涂层体系出发,综述了硼化物、硅化物和氧化物基抗氧化涂层的国内外研究进展,基于不同喷涂工艺、成分/结构设计和测试环境下的防护性能进行了对比总结,并对后续该方向研究提出了展望。
关键词:    碳/碳复合材料    等离子喷涂    抗氧化    耐高温    陶瓷涂层   
Review on plasma sprayed oxidation resistant coatings for C/C composites
LI Xiaoxuan, FU Qiangang, HU Dou
Shaanxi Key Laboratory of Fiber Reinforced Light-Weight Composites, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Oxidation sensitivity is a critical obstacle to the rapid development of carbon/carbon(C/C) composites as the thermal structural materials in aerospace applications. Currently, surface coating technology is the most effective method to achieve the long-term stable service of C/C composites in high temperature oxygen-containing environments. Among them, plasma spraying technology, which has been widely used in the preparation of thermal barrier coatings for aero-engines, has attracted much attention. In this paper, starting from the plasma sprayed high-temperature oxidation resistant coatings for C/C composites, domestic and international research progress of boride, silicide and oxide based oxidation resistant coatings have been reviewed, the protective properties based on different spraying technologies, composition/structure designs and service conditions have been compared and summarized, and the prospect future for subsequent research in this field has been proposed.
Key words:    C/C composite    plasma spraying    oxidation resistance    high temperature    ceramic coating   
收稿日期: 2021-09-03     修回日期:
DOI: 10.1051/jnwpu/20224030465
基金项目: 国家自然科学基金(51821091,52002321,52125203)资助
通讯作者: 付前刚(1979—),西北工业大学教授、博士,主要从事抗氧化碳/碳复合材料研究。e-mail:fuqiangang@nwpu.edu.cn     Email:fuqiangang@nwpu.edu.cn
作者简介: 李筱暄(2000—),女,西北工业大学硕士研究生,主要从事超高温陶瓷及其复合材料研究。
相关功能
PDF(2128KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李筱暄  在本刊中的所有文章
付前刚  在本刊中的所有文章
胡逗  在本刊中的所有文章

参考文献:
[1] MANOCHA L M. High performance carbon-carbon composites[J]. Sadhana, 2003, 28(1/2): 349-358
[2] CROCKER P, MCENANEY B. Oxidation and fracture of a woven 2D carbon-carbon composite[J]. Carbon, 1991, 29(7): 881-885
[3] HAN J C, HE X D, DU S Y. Oxidation and ablation of 3D carbon-carbon composite at up to 3 000℃[J]. Carbon, 1995, 33: 473-378
[4] 黄剑锋, 张玉涛, 李贺军, 等. 国内碳/碳复合材料高温抗氧化涂层研究新进展[J]. 航空材料学报, 2007, 27(2): 74-78 HUANG Jianfeng, ZHANG Yutao, LI Hejun, et al. New advancement of oxidation protective coatings for C/C composites[J]. Journal of Aeronautical Materials, 2007, 27(2): 74-78 (in Chinese)
[5] 付前刚. SiC晶须增韧硅化物及SiC/玻璃高温防氧化涂层的研究[D]. 西安: 西北工业大学, 2007 FU Qiangang. Study on the SiC whisker-toughened silicides and SiC/glass oxidation protective coatings[D]. Xi'an: Northwestern Polytechnical University, 2007 (in Chinese)
[6] CHOY K L. Chemical vapour deposition of coatings[J]. Progress in Materials Science, 2003, 48(2): 57-170
[7] 周清. 气相、液相渗硅原位反应制备纤维增强碳化硅基复合材料[D]. 上海:中国科学院上海硅酸盐研究所, 2008 ZHOU Qing. Preparation of fiber reinforced silicon carbide matrix composites by vapor or liquid silicon infiltration[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2008 (in Chinese)
[8] ZHU X F, ZHANG Y L, ZHANG J, et al. A gradient composite coating to protect SiC-coated C/C composites against oxidation at mid and high temperature for long-life service[J]. Journal of the European Ceramic Society, 2021, 41(16):123-131
[9] SUN J, FU Q G, NIU G N, et al. Thermal shock resistance of thermal barrier coatings for nickel-based superalloy by supersonic plasma spraying[J]. Ceramics International, 2015, 41(8): 9972-9979
[10] 杨姗洁, 彭徽, 郭洪波. 热障涂层在CMAS环境下的失效与防护[J]. 航空材料学报, 2018, 39(2): 43-51 YANG Shanjie, PENG Hui, GUO Hongbo. Failure and protection of thermal barrier coating under CMAS attack[J]. Journal of Aeronautical Materials, 2018, 39(2): 43-51 (in Chinese)
[11] DONG L, LIU M J, ZHANG X F, et al. Infiltration thermodynamics in wrinkle-pores of thermal sprayed coatings[J]. Applied Surface Science, 2021, 543: 148847
[12] ZAPATA-SOLVAS E, JAYASEELAN D D, LIN H T, et al. Mechanical properties of ZrB2 and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering[J]. Journal of the European Ceramic Society, 2013, 33(7): 1373-1386
[13] LI C, NIU Y R, LIU T, et al. Effect of WB on oxidation behavior and microstructure evolution of ZrB2-SiC coating[J]. Corrosion Science, 2019, 155: 155-163
[14] FENG X Q, WANG X, LIU Y, et al. Oxidation behaviour of plasma-sprayed ZrB2-SiC coatings[J]. Ceramics International, 2019, 45(2): 2385-2392
[15] WANG R Q, ZHU S Z, HUANG H B, et al. Low-pressure plasma spraying of ZrB2-SiC coatings on C/C substrate by adding TaSi2[J]. Surface and Coatings Technology, 2021, 420: 127332
[16] WANG Z, NIU Y R, HU C, et al. High temperature oxidation resistance of metal silicide incorporated ZrB2 composite coatings prepared by vacuum plasma spray[J]. Ceramics International, 2015, 41(10): 14868-14875
[17] 王国庆. 热防护薄壁C/C复合材料的制备及其高温性能研究[D]. 西安: 西北工业大学, 2021 WANG Guoqing. Study on preparation and high temperature performance of thermally protected thin-wall C/C composites[D]. Xi'an: Northwestern Polytechnical University, 2021(in Chinese)
[18] MA H C, MIAO Q, LIANG W P, et al. High temperature oxidation resistance of Y2O3 modified ZrB2-SiC coating for carbon/carbon composites[J]. Ceramics International, 2021, 47(5): 6728-6735
[19] PAN X H, LI C, NIU Y R, et al. Effect of Yb2O3 addition on oxidation/ablation behaviors of ZrB2-MoSi2 composite coating under different environment[J]. Corrosion Science, 2020, 175: 108882
[20] KIRCHER T A, COURTRIGHT E L. Engineering limitations of MoSi2 coatings[J]. Materials Science and Engineering A, 1992, 155(1/2): 67-74
[21] 黄剑锋, 李贺军, 熊信柏, 等. 炭/炭复合材料高温抗氧化涂层的研究进展[J]. 新型炭材料, 2005, 20(4): 373-379 HUANG Jianfeng, LI Hejun, XIONG Xinbo, et al. Progress on the oxidation protective coating of carbon-carbon composites[J]. New Carbon Materials, 2005, 20(4): 373-379(in Chinese)
[22] SUN J, FU Q G, LI T, et al. Oxidation behavior of thermally sprayed Mo-Si based composite: effect of metastable phase, porosity and residual stress[J]. Journal of Alloys and Compounds, 2019, 776: 712-721
[23] HU D, FU Q G, ZHOU L, et al. Self-healing improvement strategy of thermally sprayed MoSi2 coating at 1 500℃: from calculation to experiment[J]. Corrosion Science, 2021, 189: 109599
[24] WU H, LI H J, MA C, et al. MoSi2-based oxidation protective coatings for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying[J]. Journal of the European Ceramic Society, 2010, 30(15): 3267-3270
[25] SUN J, FU Q G, HUO C X, et al. Oxidation response determined by multiphase-dependent melting degree of plasma sprayed MoSi2 on Nb-based alloy[J]. Journal of Alloys and Compounds, 2018, 762: 922-932
[26] FEI X A, NIU Y R, JI H, et al. A comparative study of MoSi2 coatings manufactured by atmospheric and vacuum plasma spray processes[J]. Ceramics International, 2011, 37(3): 813-817
[27] PAN Y, WANG S L. Insight into the oxidation mechanism of MoSi2: Ab-initio calculations[J]. Ceramics International, 2018, 44(16): 19583-19589
[28] XIE W, FU Q G, CHENG C Y, et al. Experimental and theoretical study on the effect of different rare-earth oxides on the high-temperature stability of SiO2 glass at 1 973 K[J]. Ceramics International, 2020, 46: 24371-24378
[29] WANG C C, LI K Z, SHI X H, et al. High-temperature oxidation behavior of plasma-sprayed ZrO2 modified La-Mo-Si composite coatings[J]. Materials & Design, 2017, 128: 20-33
[30] WANG C C, LI K Z, HE Q C, et al. Oxidation and ablation protection of plasma sprayed LaB6-MoSi2-ZrB2 coating for carbon/carbon composites[J]. Corrosion Science, 2019, 151: 57-68
[31] WANG C C, LI K Z, HE Q C, et al. High-temperature oxidation and ablation behavior of plasma sprayed LaB6-MoSi2-TiB2 composite coating[J]. Materials & Design, 2018, 152: 40-53
[32] WANG C C, LI K Z, HUO C X, et al. Evolution of microstructural feature and oxidation behavior of LaB6-modified MoSi2-SiC coating[J]. Journal of Alloys and Compounds, 2018, 753: 703-716
[33] WANG C C, LI K Z, SHI X H, et al. Self-healing YSZ-La-Mo-Si heterogeneous coating fabricated by plasma spraying to protect carbon/carbon composites from oxidation[J]. Composites Part B: Engineering, 2017, 125: 181-194
[34] WANG C C, LI K Z, HE D Y, et al. Oxidation behavior of plasma-sprayed MoSi2-Yb2O3 composite coating at 1 700℃[J]. Ceramics International, 2020, 46(7): 9538-9547
[35] WANG C C, LI K Z, HE D Y, et al. Evolution behavior of rare-earth yttria modified silicide oxidation-resistant coating at 1 700℃[J]. Journal of the European Ceramic Society, 2020, 40(13): 4419-4427
[36] WANG L, FU Q G, ZHAO F L. Improving oxidation resistance of MoSi2 coating by reinforced with Al2O3 whiskers[J]. Intermetallics, 2018, 94: 106-113
[37] WANG C C, LI K Z, HE Q C, et al. Oxidation resistance and mechanical properties of LaB6-MoSi2-SiC ceramic coating toughened by SiC nanowires[J]. Ceramics International, 2018, 44(14): 16365-16378
[38] WANG L, WANG W Y, FU Q G. The improvement of the self-healing ability of MoSi2 coatings at 900-1 200℃ by introducing SiB6[J]. Journal of the European Ceramic Society, 2020, 40(8): 2896-2906
[39] WANG L, FU Q G, LIU N K, et al. Supersonic plasma sprayed MoSi2-ZrB2 antioxidation coating for SiC-C/C composites[J]. Surface Engineering, 2016, 32(7): 508-513
[40] WANG L, FU Q G, ZHAO F L, et al. Constructing self-healing ZrSi2-MoSi2 coating for C/C composites with enhanced oxidation protective ability[J]. Surface and Coatings Technology, 2018, 347: 257-269
[41] LIU F, LI H J, ZHANG W, et al. Impact of introducing SiC and Si on microstructure and oxidation resistance of MoSi2/SiC coated C/C composites prepared by SAPS[J]. Vacuum, 2020, 179: 109477
[42] ZHANG G P, SUN J, FU Q G. Effect of mullite on the microstructure and oxidation behavior of thermal-sprayed MoSi2 coating at 1 500℃[J]. Ceramics International, 2020, 46(8): 10058-10066
[43] ZHANG G P, SUN J, FU Q G. Microstructure and oxidation behavior of plasma sprayed WSi2-mullite-MoSi2 coating on niobium alloy at 1 500℃[J]. Surface and Coatings Technology, 2020, 400: 126210
[44] 王璐. APS制备自愈合梯度MoSi2基抗氧化涂层的研究[D]. 西安: 西北工业大学, 2018 WANG Lu. Self-healing gradient MoSi2-based anti-oxidation coatings prepared by SAPS[D]. Xi'an: Northwestern Polytechnical University, 2018 (in Chinese)
[45] HU D, FU Q G, ZHOU L, et al. Crack development behavior in thermally sprayed anti-oxidation coating under repeated thermal-oxygen coupling environment[J]. Ceramics International, 2021, 47(11): 15328-15336
[46] HU D, FU Q G, LIU B, et al. Multi-layered structural designs of MoSi2/mullite anti-oxidation coating for SiC-coated C/C composites[J]. Surface and Coatings Technology, 2021, 409: 126901
[47] HU D, FU Q G, ZHOU L, et al. Stress design of a laminated MoSi2/Cr coating under particle impact and high temperature environment[J]. Ceramics International, 2020, 46(8): 10696-10703
[48] CHOU T C, NIEH T G. Mechanism of MoSi2 pest during low temperature oxidation[J]. Journal of Materials Research, 1993, 8(1): 214-226
[49] LIU F, LI H J, GU S Y, et al. Spraying power influence on microstructure and bonding strength of ZrSi2 coating for SiC coated carbon/carbon composites[J]. Ceramics International, 2018, 44(6): 6619-6625
[50] LIU F, LI H J, GU S Y, et al. Effect of Y2O3 on the oxidation properties of ZrSi2/SiC coating prepared by SAPS on the carbon-carbon composites[J]. Ceramics International, 2018, 44(13): 15065-15071
[51] LIU F, LI H J, GU S Y, et al. Microstructure and oxidation property of CrSi2-ZrSi2-Y2O3/SiC coating prepared on C/C compos- ites by supersonic atmosphere plasma spraying[J]. Surface and Coatings Technology, 2019, 374: 966-974
[52] SUN C, LI H J, LUO H J, et al. Effect of Y2O3 on the oxidation resistant of ZrSiO4/SiC coating prepared by supersonic plasma spraying technique for carbon/carbon composites[J]. Surface and Coatings Technology, 2013, 235: 127-133
[53] 郭领军, 韩敏娜, 李贺军, 等. 在碳/碳复合材料表面制备碳化硅-焦硅酸镱复合涂层的方法[P]. 中国, CN101805212B
[54] GU S Y, ZHANG S Y, LIU F, et al. Microstructure and thermal shock performance of Y2Hf2O7 coating deposited on SiC coated C/C composite[J]. Applied Surface Science, 2018, 455: 849-855
[55] MA C, LI H J, WU H, et al. Mullite oxidation resistant coating for SiC-coated carbon/carbon composites by supersonic plasma spraying[J]. Journal of Materials Science & Technology, 2013, 29(1): 29-33
[56] ZHOU L, FU Q G, HUO C X, et al. Mullite whisker-mullite/yttrium aluminosilicate oxidation protective coatings for SiC coated C/C composites[J]. Ceramics International, 2019, 45(18): 24022-24030
[57] HUANG J F, LI H J, ZENG X R, et al. Structure and oxidation behavior of a plasma sprayed yttrium silicates coated SiC-C/C with a glass outer sealant from 1 573 K to 1 873 K[J]. Journal of Wuhan University of Technology(Materials Science), 2008, 23: 33-37
[58] MADHURA B, VETRIVENDAN E, RAO C, et al. Evaluation of oxidation resistant SiC-ZrB2 composite interlayer for plasma sprayed Y2O3 coating over graphite[J]. Corrosion Science, 2021, 190: 109645
[59] WANG Y W, NIU Y R, ZHONG X, et al. Water vapor corrosion behaviors of plasma sprayed ytterbium silicate coatings[J]. Ceramics International, 2020, 46(18): 28237-28243
[60] SUN L, FU Q G, SUN J, et al. Comparison investigation of hot corrosion exposed to Na2SO4 salt and oxidation of MoSi2-based coating on Nb alloy at 1 000℃[J]. Surface and Coatings Technology, 2020, 385: 125388
[61] SUN L, FU Q G, SUN J. Effect of SiO2 barrier scale prepared by pre-oxidation on hot corrosion behavior of MoSi2-based coating on Nb alloy[J]. Corrosion Science, 2020, 176: 109051
[62] SUN L, FU Q G, SUN J. Hot corrosion of SiO2-Ta2O5 binary scale on MoSi2-based ceramics[J]. Corrosion Science, 2021, 185: 109413
[63] 柳建, 孟凡军, 殷凤良, 等. 热喷涂涂层与基体结合界面研究进展[J]. 材料工程, 2017, 45(1): 101-110 LIU Jian, MENG Fanjun, YIN Fengliang, et al. Progress in research on bonding interface between thermal spraying coating and substrate[J]. Journal of Materials Engineering, 2017, 45(1): 101-110 (in Chinese)
[64] 刘纯波, 林锋, 蒋显亮. 热障涂层的研究现状与发展趋势[J]. 中国有色金属学报, 2007, 17(1): 1-13 LIU Chunbo, LIN Feng, JIANG Xianliang. Current state and future development of thermal barrier coating[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(1): 1-13 (in Chinese)