论文:2022,Vol:40,Issue(2):422-432
引用本文:
雷怡琴, 孙兆龙, 洪泽宏, 刘琪, 钟佩娜. 磁强计阵列测量一致性校正[J]. 西北工业大学学报
LEI Yiqin, SUN Zhaolong, HONG Zehong, LIU Qi, ZHONG Peina. Tensor coaxial calibration of magnetic sensor array[J]. Northwestern polytechnical university

磁强计阵列测量一致性校正
雷怡琴1, 孙兆龙1, 洪泽宏1, 刘琪1, 钟佩娜2
1. 海军工程大学 电气工程学院, 湖北 武汉 430033;
2. 中国船舶重工集团公司第七一五研究所, 浙江 杭州 310012
摘要:
为了有效解决磁强计阵列由于轴向不一致引起的误差对测量精度造成的影响,搭建由4个磁通门磁强计构成的阵列,利用欧拉旋转矩阵对其进行一致性校正。针对磁强计自身存在的非正交、刻度因子、零偏等误差影响因素,构建九参数校正系数矩阵对磁强计的磁场测量进行非正交补偿校正,得到理想正交的三分量磁场测量值。在此基础上选定测磁阵列中的参考磁强计,对待校正磁强计进行横倾、俯仰、方位3种姿态变换建立欧拉旋转矩阵,构建九参数一致性校正模型。并把参考磁强计与待校正磁强计置于无磁转台上进行实验验证。实验结果表明,经过磁强计测量误差补偿校正后,磁场测量均方根误差在10 nT以内,经过一致性校正后,各轴测量角度误差在0.01°(4.22 nT)以下。说明经过校正后磁强计阵列中不同测量点的磁强计磁场测量值可以很好地投影到基准磁强计的坐标轴上,并且可以正确放映测量点的磁场信息,具有很高的可靠性。
关键词:    磁强计阵列    一致性校正    欧拉旋转矩阵    非正交补偿校正   
Tensor coaxial calibration of magnetic sensor array
LEI Yiqin1, SUN Zhaolong1, HONG Zehong1, LIU Qi1, ZHONG Peina2
1. College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China;
2. CSIC 715th Marine Institute, Hangzhou 310012, China
Abstract:
In order to effectively solve the influence of the magnetic sensor array error caused by axial inconsistency on the measurement accuracy, an array composed of four fluxgate sensors is built by using the Euler rotation matrix, and the consistency correction is carried out. Firstly, aiming at the non orthogonal, scale factor, zero bias and other error factors of the sensor itself, a 9-PARAMETER correction coefficient matrix is constructed to compensate the non orthogonal magnetic field measurement of the sensor, and the ideal orthogonal three component magnetic field measurement value is obtained. On the above-mentioned basis, the reference sensor in the magnetometry array is selected, and the roll, pitch and azimuth of the sensor to be calibrated are transformed to establish the Euler rotation matrix, and the model for 9-PARAMETER consistency correction is constructed. The reference sensor and the sensor to be calibrated are placed on the magnetic gradiometer for experimental verification. The experimental results show that the root mean square error of magnetic field measurement is within 10 nT after the sensor measurement error compensation correction, and the angle error of each axis measurement is within 0.01åfter the consistency correction (4.22 nT). It shows that the magnetic field measurement values of different measuring points in the sensor array can be well projected on the coordinate axis of the reference sensor after correction, and the magnetic field information of the measuring points can be correctly projected, which has high reliability.
Key words:    magnetic sensor array    consistency correction    euler rotation matrix    non orthogonal compensation correction   
收稿日期: 2021-06-29     修回日期:
DOI: 10.1051/jnwpu/20224020422
通讯作者: 洪泽宏(1962-),海军工程大学副研究员,主要从事舰船消磁研究。e-mail:hzh989@tom.com     Email:hzh989@tom.com
作者简介: 雷怡琴(1996-),女,海军工程大学硕士研究生,主要从事磁场测量技术研究。
相关功能
PDF(4368KB) Free
打印本文
把本文推荐给朋友
作者相关文章
雷怡琴  在本刊中的所有文章
孙兆龙  在本刊中的所有文章
洪泽宏  在本刊中的所有文章
刘琪  在本刊中的所有文章
钟佩娜  在本刊中的所有文章

参考文献:
[1] 孙浩, 赵伟. 磁强计阵列技术及其应用[J]. 电测与仪表, 2020, 57(9):1-7 SUN Hao, ZHAO Wei. Technical characteristics and applications of magnetic sensor array[J]. Electrical Measurement & Instrumentation, 2020, 57(9):1-7 (in Chinese)
[2] ZHANG C H D. Some problems concerning the magnetic anomaly detection(MAD)[J]. Chinese Journal of Engineering Geophysics, 2007(6):549-553
[3] LENZ J, EDELSTEIN S. Magnetic sensors and their applications[J]. IEEE Sensors Journal, 2006, 6(3):631-649
[4] 刘丽敏. 磁通门张量的结构设计、误差分析及水下目标探测[D]. 长春:吉林大学, 2012:24-34 LIU Limin. Configuration design, error analysis and underwater target detection of fluxgate tensor magneto-meter[D]. Changchun:Jilin University, 2012:24-34 (in Chinese)
[5] 项琼, 岳长喜, 胡琛, 等. 基于霍尔传感器阵列的电流测量系统[J]. 电测与仪表, 2017, 54(23):105-110 XIANG Qiong, YUE Changxi, HU Chen, et al. Hall effect element array based current measurement system[J]. Electrical Measurement & Instrumentation, 2017, 54(23):105-110 (in Chinese)
[6] 于振涛, 吕俊伟, 郭宁, 等. 四面体磁梯度张量系统的误差补偿[J]. 光学精密工程, 2014, 22(10):2683-2690 YU Zhentao, LYU Junwei, GUO Ning, et al. Error compensation of tetrahedron magnetic gradiometer[J]. Optics and Precision Engineering, 2014, 22(10):2683-2690 (in Chinese)
[7] SCHMIDT P, CLARK D, LESLIE K, et al. GETIVIAG-a SQUID magnetic tensor gradiometer for mineral and oil exploration[J]. Exploration Geophysics, 2004, 35(4):297-305
[8] PANG H, PAN M, CHEN J, et al. Integrated calibration and magnetic disturbance compensation of three-axis magnetometers[J]. Measurement, 2016, 93:409-413
[9] 庞鸿锋. 捷联式地磁矢量测量系统误差分析及校正补偿技术[D]. 长沙:国防科技大学, 2015:18-33 PANG Hongfeng. Error analysis and calibration/compensation method of strap-down geomagnetic vector measurement system[D]. Changsha:National University of Defense Technology, 2015:18-33 (in Chinese)
[10] 田峥. 一种消除双探头磁通门磁强计在磁场测量中邻频干扰的方法[J]. 电工技术学报,2020,35(2):321-327 TIAN Zheng. A Method of eliminating adjacent frequency interference in magnetic field measurement of double probe fluxgate magnetometer[J]. Transations of China Electrotechnical Society, 2020, 35(2):321-327 (in Chinese)
[11] 朱兴乐. 三分量磁传感器的水平姿态校正方法[J]. 船舶电子工程, 2019, 64(8):64-68 ZHU Xingle. Method for horizontal attitude correction of thriaxial fluxgate[J]. Ship Electronic Engineering, 2019, 64(8):64-68 (in Chinese)
[12] PANG H F, CHEN D X, PAN M C, et al. Nonlinear temperature compensation of fluxgate magnetometers with a least-squares support vector machine[J]. Measurement Science & Technology, 2012, 23(2):8-25
[13] 于振涛, 吕俊伟, 毕波, 等. 四面体磁梯度张量系统的载体磁干扰补偿方法[J]. 物理学报, 2014, 63(11):139-144 YU Zhentao, LYU Junwei, BI Bo, et al. A vehicle magnetic noise compensation method for the tetrahedron magnetic gradiometer[J]. Acta Physica Sinca, 2014, 63(11):139-144 (in Chinese)
[14] 张光, 张英堂, 尹刚, 等. 基于线性误差模型的磁张量系统校正[J]. 吉林大学学报, 2015, 45(3):1012-1016 ZHANG Guang, ZHANG Yingtang, YIN Gang, et al. Calibration method of magnetic tensor systembased on linear error model[J]. Journal of Jilin University, 2015, 45(3):1012-1016 (in Chinese)
[15] 王婕, 郭子棋, 刘建英. 固定翼无人机航磁探测系统的磁补偿模型分析[J]. 航空学报, 2016, 37(11):3435-3443 WANG Jie, GUO Ziqi, LIU Jianying. Analysis on magnetic compensation model of fixed-wing UAV aeromagnetic detection system[J]. Acta Aeronautica et Astronautica Sinica, 2016,37(11):3435-3443 (in Chinese)
[16] HAN Q, DOU Z H, TONG X J, et al. A modified Tolles-Lawson model robust to the errors of the three-axis strapdown magnetometer[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3):334-338
[17] 李青竹, 李志宁. 基于椭球拟合的磁梯度张量系统集成校正[J]. 中国惯性技术报,2018,26(2):187-195 LI Qingzhu, LI Zhining. Integrated calibration of magnetic gradient tensor system based on ellipsoid fitting[J]. Journal of Chinese Inertial Technology, 2018, 26(2):187-195 (in Chinese)
[18] SCHMIDT P, CLARK D. The magnetic gradient tensor:its properties and uses in source characterization[J]. The Leading Edge, 2006, 25(1):75-78