论文:2022,Vol:40,Issue(2):352-359
引用本文:
顾文婷, 张彬乾, 马坤, 李栋, 吕鹏飞, 韩杰. 翼身融合布局背撑发动机短舱-机体流动干扰机理研究[J]. 西北工业大学学报
GU Wenting, ZHANG Binqian, MA Kun, LI Dong, LYU Pengfei, HAN Jie. Investigation on the flow mechanism of nacelle airframe interaction for podded blended wing body transport[J]. Northwestern polytechnical university

翼身融合布局背撑发动机短舱-机体流动干扰机理研究
顾文婷1, 张彬乾2, 马坤1, 李栋2, 吕鹏飞1, 韩杰1
1. 航空工业第一飞机设计研究院, 陕西 西安 710089;
2. 西北工业大学 航空学院, 陕西 西安 710072
摘要:
针对翼身融合布局背撑发动机与机体的流动干扰问题,以西北工业大学设计的300座级翼身融合民机构型NPU-BWB-300为研究对象,基于CFD方法研究了背撑式短舱对高低速典型状态布局流动特性的影响,揭示了背撑式发动机短舱与机体之间的流动干扰机理。结果表明:背撑短舱主要影响BWB布局高速流动特性,对低速特性影响不大;布置背撑式发动机后,高速状态短舱与机体之间流动干扰严重,易产生强激波并诱导流动分离。造成上述流动干扰的机理主要有2点:①短舱外表面易出现大范围超声速区,易形成激波,并对机体上表面流动产生强烈干扰,诱发激波和流动分离;②机体和短舱之间形成了收缩-扩张流动通道,出现“喉道”流动效应,产生激波和流动分离。
关键词:    翼身融合布局    背撑发动机    短舱    流动干扰    流动机理   
Investigation on the flow mechanism of nacelle airframe interaction for podded blended wing body transport
GU Wenting1, ZHANG Binqian2, MA Kun1, LI Dong2, LYU Pengfei1, HAN Jie1
1. The First Aircraft Institute of AVIC, Xi'an 710089, China;
2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
For the flow interaction between the podded engine and the airframe of blended wing body configuration(BWB), taking the 300 seats class BWB civil transport NPU-BWB-300 designed by Northwestern Polytechnical University as the research object, the influence of the podded engines on the BWB airframe at typical high and low speed conditions were investigated by CFD method, and the airframe-nacelle interference mechanism was revealed. The results indicate that the podded engines mainly affect the high speed performance of BWB, but have little effect on the low speed performance. The flow interaction between the airframe and the nacelle at high speed condition is serious when podded the engines, which leads to strong shock wave and flow separation. The flow mechanism of the above-mentioned interaction is as follows:firstly, the large supersonic region and shock wave on the nacelle external surface interferes with airframe surface flow seriously, which induces shock wave and flow separation; secondly, a convergent-divergent channel is formed between the airframe and the nacelle, resulting in the "throat" effect, which produces shock wave and flow separation.
Key words:    blended wing body(BWB)    podded engines    nacelle    flow interaction    flow mechanism   
收稿日期: 2021-07-05     修回日期:
DOI: 10.1051/jnwpu/20224020352
基金项目: 航空科学青年基金(2020Z006003001)资助
通讯作者:     Email:
作者简介: 顾文婷(1990-),航空工业第一飞机设计研究院工程师,主要从事飞行器气动布局设计研究。e-mail:guwt@avic.com
相关功能
PDF(3174KB) Free
打印本文
把本文推荐给朋友
作者相关文章
顾文婷  在本刊中的所有文章
张彬乾  在本刊中的所有文章
马坤  在本刊中的所有文章
李栋  在本刊中的所有文章
吕鹏飞  在本刊中的所有文章
韩杰  在本刊中的所有文章

参考文献:
[1] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1):10-25
[2] GRAHAMN W R, HALL C A, MORALES M V. The potential of future aircraft technology for noise and pollutant emissions reduction[J]. Transport Policy, 2014, 34(1):36-51
[3] CHEN Z L, ZHANG M H, CHEN Y C, et al. Assessment on critical technologies for conceptual design of blended wing body civil aircraft[J]. Chinese Journal of Aeronautics, 2019, 32(8):1797-1827
[4] OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences, 2016, 82:1-23
[5] 王刚, 张彬乾, 张明辉, 等. 翼身融合民机总体气动技术研究进展与展望[J]. 航空学报, 2019, 40(9):7-35 WANG Gang, ZHANG Binqian, ZHANG Minghui, et al. Study on the conceptual and aerodynamic design of blended wing body civil aircraft:progress and prospects[J]. Acta Aeronautics et Astronautics Sinica, 2019, 40(9):7-35 (in Chinese)
[6] KAWAI R T. Acoustic prediction methodology and test validation for an efficient low-noise hybrid wing body subsonic transport[R]. NF1676L-14465, 2011
[7] FLAMM J D, JAMES K D, BONET J T. Overview of ERA integrated technology demonstration(ITD) 51A ultra-high bypass(UHB) integration for hybrid wing body(HWB)[C]//54th AIAA Aerospace Science Meeting, Reston,2016
[8] ROSSOW C C, GORDARD J L, HOHEISEL H, et al. Investigations of propulsion integration interference effects on a transport aircraft configuration[J]. Journal of Aircraft, 1994, 31(5):1022-1030
[9] DIETZ G, MAI H, SCHRODER A, et al. Unsteady wing-pylon-nacelle interference in transonic flow[J]. Journal of Aircraft, 2008, 45(3):934-944
[10] 沈琼, 余熊庆, 湛岚. 运输机机翼外形与吊舱位置一体化优化方法[J]. 航空工程进展, 2010, 1(1):30-35 SHEN Qiong, YU Xiongqing, ZHAN Lan. Integrated optimization for wing shape and nacelle locations of transports[J]. Advances in Aeronautical Science and Engineering, 2010, 1(1):30-35 (in Chinese)
[11] OLIVEIRA G L, TRAPP L G, MACEDO A P. Integration methodology for regional jet aircraft with under-wing engines[C]//41st AIAA Aerospace Science Meeting and Exhibit, Reston, 2003
[12] SOUZA A M, NETO A D. Parametric analysis of different nacelle positions in the DLR-F6 model by means of the CFD++ Code[C]//26th AIAA Applied Aerodynamics Conference, Reston, 2008
[13] BONET J T, SCHELLENGER H G, RAWDON B K, et al. Environmentally responsible aviation(ERA) project N+2 advanced vehicle concepts study and conceptual design of subscale test vehicle(STV)[R]. NASA CR-2011-216519, 2011
[14] THOMAS R H, BURLEY C L, NICKOL C L. Assessment of the noise reduction potential of advanced subsonic transport concepts for the NASA environmentally responsible aviation project[C]//54th AIAA Aerospace Science Meeting, Reston, 2016
[15] STAÑKOWSKI T P, MACMANUS D G, SHEAF C T, et al. Aerodynamic interference for aero-engine installations[C]//54th AIAA Aerospace Science Meeting, Reston, 2016