论文:2022,Vol:40,Issue(2):296-305
引用本文:
张立琋, 曹高盼, 张正阳. 凸台形表面冲击冷却换热及熵增的数值模拟研究[J]. 西北工业大学学报
ZHANG Lixi, CAO Gaopan, ZHANG Zhengyang. Numerical simulation on heat transfer and entropy generation of impingement cooling on boss shaped surface[J]. Northwestern polytechnical university

凸台形表面冲击冷却换热及熵增的数值模拟研究
张立琋, 曹高盼, 张正阳
西北工业大学 动力与能源学院, 陕西 西安 710072
摘要:
采用冲击换热方式对燃气涡轮导向叶片端壁外侧腔体进行冷却,对于延长燃气涡轮的使用寿命和保障其安全运行十分有效。采用数值模拟方法,对燃气涡轮导向叶片端壁外侧腔体内凸台形表面的冲击冷却换热性能进行研究,并对冲击换热过程的熵增进行分析。研究表明:随着冲击气流雷诺数的增大,冲击靶面与冲击孔面上的平均努塞尔数增大;雷诺数一定时,增大冲击靶距,冲击靶面和冲击孔面平均努塞尔数减小,但冲击靶面上的被冷却范围增大,换热更加均匀;增大凸台上表面的宽度,冲击靶面上的被冷却范围相对减小,冲击靶面和冲击孔面的平均努塞尔数分别减小与增大;凸台上表面比其两侧的下表面换热更好;冲击冷却过程的熵增主要来源于因黏性耗散产生的熵产及换热产生的熵流,流动涡旋区的熵产是熵增的主要原因。研究结论可为优化凸台形冲击腔的结构参数及操作参数,提高其冲击换热效果提供依据和参考。
关键词:    冲击冷却    换热    数值模拟    凸台    熵增   
Numerical simulation on heat transfer and entropy generation of impingement cooling on boss shaped surface
ZHANG Lixi, CAO Gaopan, ZHANG Zhengyang
School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Using impingement jet to cool the external cavity of the end wall of the gas turbine guide blade is very effective for prolonging the service life of the gas turbine and ensuring its safety operation. In this paper, the numerical simulation method is used to study the impingement cooling heat transfer performance of the boss shaped surface in the external cavity of the end wall of the gas turbine guide blade, and the entropy generation of the impingement heat transfer process is analyzed. The results show that the average Nusselt number on the impingement target surface and the impingement hole surface increase with the increase of the Reynolds number of the impingement jet. When the Reynolds number is constant, the average Nusselt number of impingement target surface and impingement hole surface decrease with the increase of impingement target distance, but the cooling range on the impingement target surface increases and the heat transfer is more uniform. With the increase of the width of the boss shaped upper surface, the cooling range on the impingement target surface relatively decreases, and the average Nusselt numbers of the impingement target surface decreases and that of the impingement hole surface increases respectively. The heat transfer of the upper surface of the boss is better than that of the lower surface on both sides. The entropy generation in the process of impingement cooling mainly comes from the entropy production caused by viscous dissipation and the entropy flow caused by heat transfer. The entropy production in the flow vortex region is the main reason for the entropy generation. The research conclusions can provide basis and reference for optimizing the structural and operating parameters of boss shaped impingement cavity and improving its impingement heat transfer effect.
Key words:    impingement cooling    heat transfer    numerical simulation    boss    entropy generation   
收稿日期: 2021-07-06     修回日期:
DOI: 10.1051/jnwpu/20224020296
通讯作者:     Email:
作者简介: 张立琋(1963-),女,西北工业大学副教授,主要从事传热、传质及太阳能利用研究。e-mail:zhanglixi@nwpu.edu.cn
相关功能
PDF(2902KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张立琋  在本刊中的所有文章
曹高盼  在本刊中的所有文章
张正阳  在本刊中的所有文章

参考文献:
[1] ORTEGA-CASANOVA J, GRANADOS-ORTIZ F J. Numerical simulation of the heat transfer from a heated plate with surface variations to an impinging jet[J]. International Journal of Heat and Mass Transfer, 2014, 76:128-143
[2] HAIDER S A, YAN X T. Jet diameter effect on impingement jet cooling on the leading edge of a turbine blade[C]//54th AIAA Aerospace Sciences Meeting, 2016
[3] HARRINGTON J, HOSSAIN J, WANG W, et al. Effect of target wall curvature on heat transfer and pressure loss from jet array impingement[J]. Journal of Turbomachinery, 2017, 139(5):051004
[4] RIM Ben Kalifa, SABRA Hablib, NEJLA Mahjoub Saïd, et al. Parametric analysis of a round jet impingement on a heated plate[J]. International Journal of Heat and Fluid Flow, 2016, 57:11-23
[5] HAMED Shariatmadar, SHAHAB Mousavian, MOHAMMADKAZEM Sadoughi, et al. Experimental and numerical study on heat transfer characteristics of various geometrical arrangement of impinging jet arrays[J]. International Journal of Thermal Sciences, 2016, 102:26-38
[6] SINGH Dushyant, PREMACHANDRAN B, KOHLI Sangeeta. Experimental and numerical investigation of jet impingement cooling of a circular cylinder[J]. International Journal of Heat and Mass Transfer, 2013, 60:672-688
[7] LI W, XU M, REN J, et al. Experimental investigation of local and average heat transfer coefficients under an inline impinging jet array, including jets with low impingement distance and inclined angle[J]. Journal of Heat Transfer, 2017, 139(1):012201
[8] 刘海涌, 刘存良, 武文明, 等. 斜射流梯形腔内靶面的冲击冷却换热特性实验研究[J]. 推进技术, 2014, 35(3):384-391 LIU Haiyong, LIU Cunliang, WU Wenming, et al. Experimental investigation on heat transfer characteristics on target wall in a trapezoid duct with incline impingement jets[J]. Journal of Propulsion Technology, 2014, 35(3):384-391 (in Chinese)
[9] DU Kun, LI Jun, YAN Xin. Effect of the slot jet impingement on the cooling performance of the vane endwall[J]. Journal of Xi'an Jiaotong University, 2015, 49(1):21-26
[10] ZHANG L, CAO G, FENG K, et al. Improvement of multi-hole airflow impingement on flow and heat transfer characteristics inside a turbine vane cavity[J]. Applied Sciences, 2021, 11(21):1-20
[11] 唐婵, 张靖周, 谭晓茗, 等. 带集气腔的脉冲射流冲击换热实验和数值研究[J]. 航空动力学报, 2019, 34(6):1334-1343 TANG Chan, ZHANG Jingzhou, TAN Xiaoming, et al. Experimental and numerical study on pulsed-jet impingement heat transfer with an additional collection chamber[J]. Journal of Aerospace Power, 2019, 34(6):1334-1343 (in Chinese)
[12] 李志, 豆瑞锋, 温治, 等. 单孔射流冲击流动与换热过程的数值模拟[J]. 工业炉, 2011, 33(4):1-7 LI Zhi, DOU Ruifeng, WEN Zhi, et al. Numerical simulation of single-nozzle jet impinging flow and heat transfer process[J]. Industrial Furnace, 2011, 33(4):1-7 (in Chinese)
[13] SRIROMREUN Parkpoom, SRIROMREUN Paranee. A numerical and experimental investigation of dimple effects on heat transfer enhancement with impinging jets[J]. Energies, 2019, 12(5):1-16
[14] 蒋新伟, 许卫疆, 朱惠人. 冲击射流在凹坑壁面通道内的换热特性研究[J]. 工程热物理学报, 2016, 37(12):2638-2644 JIANG Xinwei, XU Weijiang, ZHU Huiren. Study of heat transfer characteristics in a dimpled wall channel with impingement jets[J]. Journal of Engineering Thermophysics, 2016, 37(12):2638-2644 (in Chinese)
[15] 蒋新伟, 许卫疆, 朱惠人. 带凹坑楔形通道内射流冲击换热特性实验[J]. 航空动力学报, 2017, 32(12):2981-2987 JIANG Xinwei, XU Weijiang, ZHU Huiren. Experiment of impingement heat transfer characteristics in dimpled wedge channel[J]. Journal of Aerospace Power, 2017, 32(12):2981-2987 (in Chinese)
[16] CHEN L, BRAKMANN R G A, WEIGAND B, et al. Experimental and numerical heat transfer investigation of an impingement jet array with V-ribs on the target plate and on the impingement plate[J]. International Journal of Heat and Fluid Flow, 2017, 68:126-138
[17] XIE Y, SHI D, SHEN Z. Experimental and numerical investigation of heat transfer and friction performance for turbine blade tip cap with combined pin-fin-dimple/protrusion structure[J]. International Journal of Heat and Mass Transfer, 2017, 104:1120-1134
[18] HUANG X, YANG W, MING T, et al. Heat transfer enhancement on a microchannel heat sink with impinging jets and dimples[J]. International Journal of Heat and Mass Transfer, 2017, 112:113-124
[19] TONG F, GOU W, ZHAO Z, et al. Numerical investigation of impingement heat transfer on smooth and roughened surfaces in a high-pressure turbine inner casing[J]. International Journal of Thermal Sciences, 2020, 149:106186
[20] ZHOU J, WANG X, LI J. Influences of effusion hole diameter on impingement/effusion cooling performance at turbine blade leading edge[J]. International Journal of Heat and Mass Transfer, 2019, 134:1101-1118
[21] LAM P, PRAKASH K A. A numerical investigation and design optimization of impingement cooling system with an array of air jets[J]. International Journal of Heat and Mass Transfer, 2017, 108:880-900
[22] RIES F, LI Y, KLINGENBERG D, et al. Near-wall thermal processes in an inclined impinging jet:analysis of heat transport and entropy generation mechanisms[J]. Energies, 2018, 11(6):1-23
[23] SHUJA S Z, YILBAS B S, BUDAIR M O. Investigation into a confined laminar swirling jet and entropy production[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2002, 12(7):870-877
[24] NATALINI G, SCIUBBA E. Minimization of the local rates of entropy production in the design of air-cooled gas turbine blades[J]. Journal of Engineering for Gas Turbines & Power, 1999, 121(3):466-475