论文:2022,Vol:40,Issue(2):271-280
引用本文:
丁友, 周洲, 刘红军, 王科雷. 基于基结构法的机翼仿生曲面网格结构设计[J]. 西北工业大学学报
DING You, ZHOU Zhou, LIU Hongjun, WANG Kelei. Designing bionic surface grid structure with base structure method[J]. Northwestern polytechnical university

基于基结构法的机翼仿生曲面网格结构设计
丁友1, 周洲1, 刘红军2, 王科雷1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工大学 无人机特种技术重点实验室, 陕西 西安 710072
摘要:
以某太阳能无人机机翼结构为研究对象,结合该类结构刚度分散大、超轻质、大展弦比等特点,运用基结构离散拓扑结构优化方法与仿生思想相结合的方式,设计得到了一种新的碳纤维轻质机翼结构。利用分步优化设计思想,通过GRAND法建立基结构网格关系,得到离散拓扑优化设计空间,并运用线性方法求解优化问题,获得机翼结构的拓扑关系;通过提取离散拓扑结构中杆件的节点尺寸信息,建立设计域内的材料权重分布;结合仿生设计理念,以编译结构拓扑生成方式的形式,表征参数化的模型几何特征;运用优化方法,得到最终的仿生机翼曲面网结构的最优拓扑形式。对比了该仿生结构与其他传统结构形式的结构性能,验证了所提方法对于太阳能飞机这类特殊机翼结构在超轻设计方面的可行性,在满足使用要求的前提下,实现了34.4%的结构减重。为开展此类刚度分散、碳纤维用超轻质结构研究提供了一种新的设计方法。
关键词:    机翼结构    复合材料    轻量化    基结构法    仿生设计   
Designing bionic surface grid structure with base structure method
DING You1, ZHOU Zhou1, LIU Hongjun2, WANG Kelei1
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Key Laboratory for UAV Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
To improve the efficiency of the composite material wing structure of a solar-powered UAV, this paper proposed an efficient discrete structural topological optimization method based on the notion of bionic design. The method considers the features of such wing structures as discrete stiffness, high aspect ratio and ultralight. Through multi-step optimization, the grid relationship of the base structure method is established with the GRAND method, so as to obtain the design space of discrete topological optimization. First, linear programming is used to solve optimization problems and thus gives the topological relations of a wing structure. Then, by extracting the information on node dimensions of the discrete topological structure, a bionic geometric model is established with the notion of bionic design. In order to obtain the optimal topological form of the bionic surface grid structure of the wing, the finite element analysis and the structural dimension optimization are carried out with the parameterization method. On the condition that design requirements are satisfied, the optimization reduces the weight of the wing by 34.4%, compared with the traditional design methods. Results show that the structural optimization method proposed in the paper is effective for this special composite material wing structure and can be used for the lightweight design of similar structures.
Key words:    wing structure    composite materials    lightweight    base structure method    bionic design   
收稿日期: 2021-07-23     修回日期:
DOI: 10.1051/jnwpu/20224020271
基金项目: 陕西省自然科学基金(2019JM-044)与陕西省重点研发计划(2021GY-339,2021ZDLGY09-08)资助
通讯作者: 周洲(1966-),女,西北工业大学教授,主要从事无人机总体设计、气动布局及飞行力学研究。e-mail:zhouzhou@nwpu.edu.cn     Email:zhouzhou@nwpu.edu.cn
作者简介: 丁友(1989-),西北工业大学博士研究生,主要从事飞行器结构设计及仿生优化研究。
相关功能
PDF(5287KB) Free
打印本文
把本文推荐给朋友
作者相关文章
丁友  在本刊中的所有文章
周洲  在本刊中的所有文章
刘红军  在本刊中的所有文章
王科雷  在本刊中的所有文章

参考文献:
[1] 王亚飞, 安永旺, 杨继何. 临近空间飞行器的现状及发展趋势[J]. 国防技术基础, 2010(1):33-37 WANG Yafei, AN Yongwang, YANG Jihe. Current situations and trends of near-space vehicles[J]. Technology Foundation of National Defence, 2010(1):33-37 (in Chinese)
[2] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12 DU Shanyi. Advanced composite materials in aeronautics and astronautics[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12 (in Chinese)
[3] NIEMANN S, KOLESNIKOV B, LOHSE-BUSCH H, et al. The use of topology optimisation in the conceptual design of next generation lattice composite aircraft fuselage structures[J]. The Aeronautical Journal, 2013, 117(1197):1139-1154
[4] KROG L, TUCKER A, KEMP M, et al. Topology optimisation of aircraft wing box ribs[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2004
[5] 邓扬晨, 詹光, 高彤, 等. 飞机翼面结构布局综合设计方法研究[J]. 飞机设计, 2004(2):28-36 DENG Yangchen, YAN Guang, GAO Tong, et al. Study on integrated design method of aircraft wing structure layout[J]. Aircraft Design, 2004(2):28-36 (in Chinese)
[6] BALABANOV V, HAFTKA R T. Topology optimization of transport wing internal structure[J]. Journal of Aircraft, 1996, 33(1):232-233
[7] ZEGARD T, PAULINO G H. GRAND-ground structure based topology optimization for arbitrary 2D domains using MATLAB[J]. Structural and Multidisciplinary Optimization, 2014, 50(5):861-882
[8] ZEGARD T, PAULINO G H. GRAND3-ground structure based topology optimization for arbitrary 3D domains using MATLAB[J]. Structural and Multidisciplinary Optimization, 2015, 52(6):1161-1184
[9] 高阁. 桁架结构拓扑优化的理论与应用研究[D]. 长春:中国科学院大学, 2017 GAO Ge. Study on the theory and application of topology optimization of truss structure[D]. Changchun:University of Chinese Academy of Sciences, 2017 (in Chinese)
[10] DIMCIC M. Structural optimization of grid shells based on genetic algorithms[D]. Stuttgart:Stuttgart University, 2011
[11] NAGY D, ZHAO D, BENJAMIN D. Nature-based hybrid computational geometry system for optimizing component structure//Humanizing Digital Reality[M]. Singapore:Springer, 2018:167-176
[12] NAGY D. Nature-based hybrid computational geometry system for optimizing the interior structure of aerospace components[C]//ACM SIGGRAPH 2017 Talks, New York, 2017
[13] HAMM C, JANSEN S, PHILIPP B. Verfahren evolutionary light structure engineering(ELiSE)[J]. Counterpoints, 2008, 138:33-43
[14] JIANG C, TANG C, SEIDEL H P, et al. Design and volume optimization of space structures[J]. ACM Transactions on Graphics, 2017, 36(4):159
[15] MAIER M, SIEGEL D, THOBEN K D, et al. Transfer of natural micro structures to bionic lightweight design proposals[J]. Journal of Bionic Engineering, 2013, 10(4):469-478
[16] KUEH A, PELLEGRINO S. ABD matrix of single-ply triaxial weave fabric composites[C]//48th AIAA-ASME-ASCE-AHS-ASC Structures, Structural Dynamics, and Materials Conference, 2007