论文:2022,Vol:40,Issue(2):261-270
引用本文:
杜淑雅, 桑为民, 庞润. 基于数值模拟的2种条纹沟槽减阻特性对比分析[J]. 西北工业大学学报
DU Shuya, SANG Weimin, PANG Run. Comparative analysis of drag reduction characteristics of two-type riblets based on numerical simulation[J]. Northwestern polytechnical university

基于数值模拟的2种条纹沟槽减阻特性对比分析
杜淑雅1, 桑为民1, 庞润2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 航空工业西安飞行自动控制研究所, 陕西 西安 710076
摘要:
湍流减阻是流体力学研究的热点问题,在诸多湍流减阻方法中,条纹沟槽因其结构简单和使用方便等特点,受到广泛关注。为了探究沟槽形貌对沟槽减阻效果的影响,采用基于大涡模拟的CFD方法,数值研究三角形与梯形沟槽对湍流边界层流场的影响及减阻特性。通过RANS、DES和LES方法分别对光滑槽道湍流进行数值模拟,并与直接数值模拟的结果进行对比,验证了大涡模拟方法的准确性和可行性。基于参考文献的实验结果,对三角形与梯形沟槽湍流边界层流场的积分统计量、一阶统计量和二阶统计量等流场参数进行了对比分析,并通过对减阻率、时均速度、速度脉动均方根、剪应力、湍动能生成项和展向脉动速度等物理参量变化及影响规律研究,探讨了2种条纹沟槽减阻特性,由此得出结论:在相同无量纲条件下,梯形沟槽相较三角形沟槽减阻效果更好。
关键词:    湍流减阻    大涡模拟    湍流边界层流动    条纹沟槽   
Comparative analysis of drag reduction characteristics of two-type riblets based on numerical simulation
DU Shuya1, SANG Weimin1, PANG Run2
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. AVIC Xi'an Flight Automatic Control Research Institute, Xi'an 710076, China
Abstract:
Turbulent drag reduction has always been a hot issue in fluid mechanics. Among various turbulent drag reduction methods, riblets has attracted wide attention due to its simple structure and convenient application. In order to investigate the effect of the riblets shape on the drag reduction, the effect of the triangular and trapezoidal riblets on the turbulent boundary layer flow field and drag reduction characteristics has been studied numerically by adopting the CFD method and based on the large eddy simulation (LES). The numerical simulation of turbulent channel flow was conducted by RANS, DES and LES methods respectively, and their results were compared with the results of direct numerical simulation (DNS) to verify the accuracy and feasibility of the large eddy simulation method. According to the experimental results in references, the flow field parameters such as integral statistics, first-order statistics and second-order statistics of the triangular and trapezoidal riblets on the turbulent boundary layer flow fields were compared and analyzed. The drag reduction characteristics of two-type riblets were investigated by studying the variation in physical parameters such as drag reduction rate, time-averaged velocity, root mean square velocity fluctuation, shear stress, turbulent kinetic energy generation and contour of spanwise velocity fluctuation, and it was concluded that the trapezoidal riblets have better drag reduction effect than the triangular riblets under the same dimensionless condition.
Key words:    turbulent drag reduction    large eddy simulation method    turbulent boundary layer flow    riblets   
收稿日期: 2021-06-29     修回日期:
DOI: 10.1051/jnwpu/20224020261
基金项目: 航空科学基金(2018ZA53014)资助
通讯作者: 桑为民(1974-),西北工业大学教授,主要从事计算流体力学与气动设计研究。e-mail:sangweimin@nwpu.edu.cn     Email:sangweimin@nwpu.edu.cn
作者简介: 杜淑雅(1998-),女,西北工业大学硕士研究生,主要从事空气动力学分析与设计研究。
相关功能
PDF(4136KB) Free
打印本文
把本文推荐给朋友
作者相关文章
杜淑雅  在本刊中的所有文章
桑为民  在本刊中的所有文章
庞润  在本刊中的所有文章

参考文献:
[1] 周刘勇. 类鲨鱼皮织构的制备及其减摩性能研究[D]. 赣州:江西理工大学, 2018 ZHOU Liuyong. Preparation and antifriction properties of shark shin texture[D]. Ganzhou:Jiangxi University of Science and Technology, 2018 (in Chinese)
[2] CHEN H W, RAO F G, SHANG X P, et al. Biomimetic drag reduction study on herringbone riblets of bird feather[J]. Journal of Bionic Engineering, 2013,10(3):341-349
[3] WALSH M J, WEINSTEIN L M. Drag and heat transfer on surfaces with small longitudinal fins[C]//11th Fluid and Plasma Dynamics Conference, Seattle, 1978
[4] WALSH M J, LINDEMANN A M. Optimization and application of riblets for turbulent drag reduction[C]//22nd Aerospace Sciences Meeting, Reno, 1984
[5] WALSH M J. Turbulent boundary layer drag reduction using riblets[C]//20th Aerospace Sciences Meeting Orland, 1982
[6] WALSH M J. Riblets[EB/OL]. (2012-08-23)[2021-05-25]. https://doi.org/10.2514/5.9781600865978.0203.0261
[7] BECHERT D W, BRUSE M, HAGE W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338:59-87
[8] BACHER E V, SMITH C R. Turbulent boundary-layer modification by surface riblets[J]. AIAA Journal, 1986, 24(8):1382- 1385
[9] CHOI K S. Near-wall structure of a turbulent boundary layer with riblets[J]. Journal of Fluid Mechanics, 1989, 208:417-458
[10] CHU D C, KARNIADAKIS G E. A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces[J]. Journal of Fluid Mechanics, 1993, 250:1-42
[11] CHOI H, MOIN P, KIM J. Direct numerical simulation of turbulent flow over riblets[J]. Journal of Fluid Mechanics, 1993, 255:503-539
[12] MARTIN S, BHUSHAN B. Fluid flow analysis of a shark-inspired microstructure[J].Journal of Fluid Mechanics, 2014, 756:5-29
[13] KIM J, MOIN P, MOSER R. Turbulence statistics in fully developed channel flow at low reynolds number[J]. Journal of Fluid Mechanics, 1987, 177:133-166
[14] 张子良. 仿鲨鱼皮二维肋条湍流减阻机理与模化研究[D]. 北京:中国科学院工程热物理研究所, 2020 ZHANG Ziliang. Drag reduction mechanism and modeling strategy of two dimensional shark-skin-inspired riblers in turbulent flows[D]. Beijing:Institute of Engineering Thermophysics Chinese Academy of Sciences, 2020 (in Chinese)
[15] 刘顺超. 基于大涡模拟的非光滑平板湍流相干结构研究[D]. 北京:华北电力大学, 2017 LIU Shunchao. Study on turbulence coherent structure of non-smooth plate based on large eddy simulation[D]. Beijing:North China Electric Power University, 2017 (in Chinese)