论文:2022,Vol:40,Issue(1):199-205
引用本文:
李嘉, 李华聪, 张伟, 王玥, 李柯柯, 王淑红. 高压燃油离心泵压力脉动及非定常流动分析[J]. 西北工业大学学报
LI Jia, LI Huacong, ZHANG Wei, WANG Yue, LI Keke, WANG Shuhong. Transient flow structures and pressure pulsations of a high-pressure aero-fuel centrifugal pump[J]. Northwestern polytechnical university

高压燃油离心泵压力脉动及非定常流动分析
李嘉1, 李华聪2, 张伟3, 王玥4, 李柯柯4, 王淑红4
1. 长安大学 工程机械学院, 陕西 西安 710064;
2. 西北工业大学 动力与能源学院, 陕西 西安 710072;
3. 陕西空天动力研究院有限公司, 陕西 西安 710000;
4. 中国航发西安动力控制科技有限公司, 陕西 西安 710077
摘要:
为了掌握全工作包线内高压燃油离心泵的非定常流动特性,对高压航空燃油离心泵进行了数值模拟并分析其内部的压力脉动及非定常流动变化。将仿真预测结果与泵的性能试验结果进行对比,验证了所采用的仿真方法的有效性;对泵内关键位置的压力进行监测,并利用快速傅里叶变化完成压力脉动的时频特性分析;重点以相对速度、湍动能等为指标,分析泵内非定常流动结构的变化。结果表明:设计流量工况下叶轮流道内压力脉动主频为转频fn,蜗壳流道内压力脉动主频为叶频fb,不同的监测点均呈现出相似的脉动变化规律。设计流量工况下泵内整体流动相对平稳,但小流量工况下叶轮流道内出现了一定的漩涡流动,主要存在于靠近隔舌区域的叶轮流道出口位置。此外,叶轮出口及隔舌区域的湍动能分布范围较大且变化强烈,此处存在一定的水力损失。
关键词:    燃油离心泵    非定常特性    压力脉动    流动结构    湍动能   
Transient flow structures and pressure pulsations of a high-pressure aero-fuel centrifugal pump
LI Jia1, LI Huacong2, ZHANG Wei3, WANG Yue4, LI Keke4, WANG Shuhong4
1. School of Construction Machinery, Chang'an University, Xi'an 710064, China;
2. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China;
3. Shaanxi Aerospace and Astronautics Propulsion Research Institute, Xi'an 710000, China;
4. China AVIC Xi'an Aero-Engine Controls Technology Co., Ltd, Xi'an 710077, China
Abstract:
In order to study the complex transient flow characteristics of a high-pressure aero-fuel centrifugal pump within its full working envelope, a certain type of centrifugal pump is numerically simulated, in which the simulation results are compared with the experiment results to verify the effectiveness of the present simulation method. Then, the verified simulation method is selected to analyze the transient flow characteristics, in which the time-frequency characteristic of pressure pulsation at monitored positions is analyzed by using fast fourier transform. In addition, the unsteady flow structures are studied by focusing on the relative speed, turbulent kinetic energy and so on. The results show that the main frequency of pressure pulsation in the impeller and volute is rotation frequency and blade frequency, respectively, where different monitoring points show similar trend. Meanwhile, the flow is relatively stable under design flow rate condition. However, a certain large-scale vortex appears in the impeller channel under small flow rate conditions, which mainly exists at the exit of the impeller channel near the tongue. In addition, turbulent kinetic energy at the exit of the impeller and the tongue has a large distribution range and changes seriously, where a certain hydraulic loss is produced.
Key words:    aero-fuel centrifugal pump    transient flow characteristic    pressure pulsation    flow structure    turbulence kinetic energy   
收稿日期: 2021-03-21     修回日期:
DOI: 10.1051/jnwpu/20224010199
基金项目: 陕西省自然科学基金青年项目(2020JQ-335)、中央高校基金(300102259101)与国家重大科技专项(2017-V-0013-0065)资助
通讯作者:     Email:
作者简介: 李嘉(1989—),长安大学副教授,主要从事离心泵、离心压气机性能与可靠性一体设计研究。e-mail:lijia89626@163.com
相关功能
PDF(3570KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李嘉  在本刊中的所有文章
李华聪  在本刊中的所有文章
张伟  在本刊中的所有文章
王玥  在本刊中的所有文章
李柯柯  在本刊中的所有文章
王淑红  在本刊中的所有文章

参考文献:
[1] 刘尚勤. 离心泵用作航空发动机主燃油泵研究[J]. 航空发动机, 2006,32(2):43-45 LIU Shangqin. Investigation of centrifugal pump used as aeroengine main fuel pump[J]. Aeroengine, 2006, 32(2):43-45(in Chinese)
[2] 樊思齐. 航空发动机控制[M]. 西安:西北工业大学出版社, 2008:24-27 FAN Siqi. Aeroengine control[M]. Xi'an:Northwestern Polytechnical University Press, 2008:24-27(in Chinese)
[3] 肖红亮, 李华聪, 李嘉, 等. 基于QPSO混合算法的变循环发动机建模方法[J]. 北京航空航天大学学报, 2018, 44(2):305-315 XIAO Hongling, LI Huacong, LI Jia, et al. Modeling method of variable cycle engine based on QPSO hybrid algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2):305-315(in Chinese)
[4] 刘显为, 李华聪, 史新兴, 等. 基于离子群算法的航空离心泵复合叶轮优化设计研究[J]. 推进技术, 2019, 40(8):1743-1751 LIU Xianwei, LI Huacong, SHI Xinxing, et al. Optimization design of composite impeller of aero-centrifugal pump based on particle swarm optimization[J]. Journal of Propulsion Technology, 2019, 40(8):1743-1751(in Chinese)
[5] 杨军虎, 边中, 钟春林, 等. 基于水力损失计算的离心泵叶轮叶片出口角选择方法[J]. 西华大学学报, 2016, 35(3):89-112 YANG Junhu, BIAN Zhong, ZHONG Chunlin, et al. Method for selecting centrifugal pump impeller outlet angle based on calculation of centrifugal pump impeller's hydraulic loss[J]. Journal of Xihua University, 2016, 35(3):89-112(in Chinese)
[6] 李嘉, 李华聪, 王淑红, 等. 一体式多级导流诱导轮与叶轮型线优化研究[J]. 北京航空航天大学学报,2015, 41(5):953-960 LI Jia, LI Huacong, WANG Shuhong, et al. The profile optimization study of muti-diversion combination inducer and impeller[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5):953-960(in Chinese)
[7] SAFIKHANI H, KHALKHALI A, FARAJPOOR M. Pareto based multi-objective optimization of centrifugal pumps using CFD, neural networks and genetic algorithms[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(1):37-48
[8] 张兴, 张文明, 廖姣. 叶片数对低比转速离心泵性能影响分析[J]. 热能动力工程, 2017, 32(8):107-110 ZHANG Xing, ZHANG Wenming, LIAO Jiao. Impact of blade number on the performance of low specific speed centrifugal pump[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(8):107-110(in Chinese)
[9] 万丽佳, 宋文武, 李金琼. 叶片包角对低比转速离心泵固液两相非定常流动的影响[J]. 热能动力工程, 2019, 34(7):37-44 WAN Lijia, SONG Wenwu, LI Jinqiong. Effect of blade packet angle on unsteady flow of solid-liquid two-phase of centrifugal pump with low ratio speed[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(7):37-44(in Chinese)
[10] 崔宝玲, 陈杰, 李晓俊, 等. 高速诱导轮离心泵内空化发展可视化实验与数值模拟[J]. 农业机械学报, 2018, 49(4):148-155 CUI Baoling, CHEN Jie, LI Xiaojun, et al. Experiment and numerical simulation of cavitation evolution in high speed centrifugal pump with inducer[J]. Transaction of the Chinese Society for Agriculture Machinery, 2018, 49(4):148-155(in Chinese)
[11] ZHENG L L, CHEN X P, ZHANG W, et al. Investigation on characteristics of pressure fluctuation in a centrifugal pump with clearance flow[J]. Journal of Mechanical Science and Technology, 2020, 34(9):3657-3666
[12] 周强, 李宏坤, 仲作文, 等. 离心泵导叶流道进口处压力脉动研究[J]. 工程热物理学报, 2020, 41(7):1679-1684 ZHOU Qiang, LI Hongkun, ZHONG Zuowen, et al. Investigation on pressure pulsation at the inlet of guide vane in a centrifugal pump[J]. Journal of Engineering Thermophysics, 2020, 41(7):1679-1684(in Chinese)
[13] 裴奕凡. 弯管入流对离心泵压力脉动特性的影响分析[D]. 西安:西安理工大学, 2019:20-32 PEI Yifan. Study on the influence of bend inflow pressure pulsation characteristics of centrifugal pump[D]. Xi'an:Xi'an University of Technology, 2019:20-32(in Chinese)
[14] 袁建平, 王振清, 付燕霞, 等. 中比转速离心泵进口回流特性研究[J]. 振动与冲击, 2020, 39(22):8-15 YUAN Jianping, WANG Zhenqing, FU Yanxia, et al. Experiments on the backflow characteristics at the inlet of a moderate-speed centrifugal pump[J]. Journal of Vibration and Shock, 2020, 39(22):8-15(in Chinese)
[15] 敏政, 朱月龙, 黎义斌, 等. 基于DDES的离心泵蜗壳内部涡动力学研究[J]. 西华大学学报, 2019, 38(4):16-21 MIN Zheng, ZHU Yuelong, LI Yibin, et al. Study on internal vorticity dynamics of centrifugal pump volute based on DDES[J]. Journal of Xihua University, 2019, 38(4):16-21(in Chinese)
[16] 杨红红. 离心泵导叶内失速流动特性及其产生机理研究[D]. 西安:西安理工大学, 2019:3-35 YANG Honghong. Study on stall flow characteristics and generation mechanism in diffuser vane of centrifugal pump[D]. Xi'an:Xi'an University of Technology, 2019:3-35(in Chinese)