论文:2022,Vol:40,Issue(1):189-198
引用本文:
靳淇超, 曹帅帅, 汪文虎, 蒋睿嵩, 郭磊. DD5镍基单晶高温合金缓进磨削表面完整性研究[J]. 西北工业大学学报
JIN Qichao, CAO Shuaishuai, WANG Wenhu, JIANG Ruisong, GUO Lei. Study on surface integrity of DD5 nickel-based single crystal super-alloy in creep-feed grinding[J]. Northwestern polytechnical university

DD5镍基单晶高温合金缓进磨削表面完整性研究
靳淇超1, 曹帅帅2, 汪文虎2, 蒋睿嵩3, 郭磊1
1. 长安大学 道路施工技术与装备教育部重点实验室, 陕西 西安 710064;
2. 西北工业大学 航空发动机高性能制造工业和信息化部重点实验室, 陕西 西安 710072;
3. 四川大学 空天科学与工程学院, 四川 成都 610065
摘要:
为控制单晶涡轮叶片榫齿缓进磨削成形表面质量,通过实验研究缓进磨削工艺参数对DD5镍基单晶高温合金磨削表面完整性的影响规律。实验结果表明,当砂轮线速度在15~30 m/s、工件进给速度在120~210 mm/min、磨削深度在0.1~0.7 mm参数范围内,磨削表面垂直磨削方向粗糙度在0.56~0.74 μm范围内,沿磨削方向粗糙度约为垂直磨削方向粗糙度的1/5。三维形貌和表面纹理测试结果表明磨削表面存在明显的因磨粒耕犁和划擦而产生的表面凹槽和材料隆起现象,不同工艺参数下磨削表面凹槽和隆起材料的长度和高度有较明显变化;砂轮线速度对沿磨削方向凹槽和隆起长度影响较敏感;磨削深度和工件进给速度对垂直磨削方向的凹槽和隆起轮廓起伏程度敏感。磨削表面出现了不同程度加工硬化,最高达11.6%,最大硬化层深度达到110 μm;磨削表面层出现明显塑性变形,γ相沿着磨削方向出现不同程度的滑移变形,立方化的γ'相出现了偏移、扭曲、破碎断裂现象,最大塑性变形层厚度为2.92 μm;DD5缓进磨削塑性变形是加工硬化产生主要原因。实验结果对DD5榫齿磨削提供理论指导。
关键词:    DD5    单晶高温合金    缓进磨削    表面完整性   
Study on surface integrity of DD5 nickel-based single crystal super-alloy in creep-feed grinding
JIN Qichao1, CAO Shuaishuai2, WANG Wenhu2, JIANG Ruisong3, GUO Lei1
1. Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an 710064, China;
2. Key laboratory of High Performance Manufacturing for Aero Engine Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China;
3. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
Abstract:
In order to control the forming surface quality of signal crystal turbine blade tenon teeth in the creep feed grinding, the influence of the creep feed grinding parameters on the grinding surface integrity of DD5 nickel-based single crystal superalloy was investigated via orthogonal experiment. The results showed that the surface roughness along vertical grinding direction was ranged at 0.56-0.74 μm at the grinding wheel speed range of 15-30 m/s, feeding velocity range of 120-210 mm/min and grinding depth range of 0.1-0.7 mm, and the surface roughness in the grinding direction is about 1/5 of that in the vertical grinding direction. The surface topography and texture results showed that there were the obvious grooves and ridges on the grinding surface caused by the grain ploughing and scratching, the length and height of grooves and ridges on the grinding surface changed obviously under different processing parameters, and the three-dimensional topography of the grinding surface fluctuated obviously. The length of grooves and ridges along the grinding direction were sensitive to the speed of grinding wheel, waviness of grooves and ridges along the vertical grinding direction were sensitive to the grinding depth and workpiece feed rate. The different degrees of work hardening effect were presented at the grinding surface, the biggest work hardening effect achieved at 11.6%, and the maximum depth of work hardening effect was 110 μm. The distinct plastic deformation appeared at the grinding surface. The γ phase presented slip deformation along the grinding direction with various degrees, and the γ' phase presented skewing, twisting, broken and fracture, the maximum depth of plastic deformation was 2.92 μm. The work hardening effect of DD5 creep feed grinding mainly due to the plastic deformation degree at the grinding surface. The experimental conclusions provided theoretical guidance for DD5 signal crystal turbine blade tenon teeth.
Key words:    DD5    single crystal superalloy    creep-feed grinding    surface integrity   
收稿日期: 2021-05-03     修回日期:
DOI: 10.1051/jnwpu/20224010189
基金项目: 陕西省自然科学基金青年项目(2021JQ-284)资助
通讯作者:     Email:
作者简介: 靳淇超(1986—),长安大学工程师,主要从事材料切削加工表面完整性研究。e-mail:jinqichao@chd.edu.cn
相关功能
PDF(4557KB) Free
打印本文
把本文推荐给朋友
作者相关文章
靳淇超  在本刊中的所有文章
曹帅帅  在本刊中的所有文章
汪文虎  在本刊中的所有文章
蒋睿嵩  在本刊中的所有文章
郭磊  在本刊中的所有文章

参考文献:
[1] 王效光, 李嘉荣, 喻健, 等. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51(10):1253-1260 WANG Xiaoguang, LI Jiarong, YU Jian, et al. Tensile anisotropy of single crystal superalloy DD9[J]. Acta Metallurgica Sinca, 2015, 51(10):1253-1260(in Chinese)
[2] SHABADI R, IONESCU M, JEANDIN M, et al. Formation of secondary phases in the boundary between surface defect grains and matrix in third generation nickel-based single crystal superalloy turbine blades[J]. Materials Science Forum, 2018, 941:766-771
[3] 苗情. 微晶刚玉砂轮缓进深切磨削镍基单晶合金涡轮叶片榫齿研究[D]. 南京:南京航空航天大学, 2020 MIAO Qing. Creep feed profile grinding of turbine blade root of single crystal nickle-based superalloy with microcrystalline alumina wheels[D]. Nanjing:Nanjing University of Aeronautics & Astronautics, 2020(in Chinese)
[4] 张浩, 刘吉川. 涡轮叶片榫齿加工方法分析[J]. 内燃机, 2019(4):31-33 ZHANG Hao, LIU Jichuan. Analysis of machining method of turbine blade tenon tooth[J]. Internal Combustion Engines, 2019(4):31-33(in Chinese)
[5] 丁文锋, 苗情, 李本凯, 等. 面向航空发动机的镍基合金磨削技术研究进展[J]. 机械工程学报, 2019, 55(1):189-215 DING Wenfeng, MIAO Qing, LI Benkai, et al. Review on grinding technology of nickel-based superalloys used for aero-engine[J]. Journal of Mechanical Engineering, 2019, 55(1):189-215(in Chinese)
[6] 傅玉灿, 张志伟, 徐九华, 等. 定向凝固镍基高温合金叶片榫齿高效深切成型磨削[J]. 南京航空航天大学学报, 2014, 46(2):190-196 FU Yucan, ZHANG Zhiwei, XU Jiuhua, et al. High efficiency deep grinding of directional solidified nickel-based superalloy turbine blade root[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(2):190-196(in Chinese)
[7] DING W F, XU J H, CHEN Z Z, et al. Grindability and surface integrity of cast nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels[J]. Chinese Journal of Aeronautics, 2010, 23(4):501-510
[8] LI Z, DING W F, LIU C J, et al. Grinding performance and surface integrity of particulate-reinforced titanium matrix composites in creep-feed grinding[J]. International Journal of Advanced Manufacturing Technology, 2017, 94(2):1-12
[9] CAI M, GONG Y D, YAO S, et al. Experimental study on grinding surface properties of nickel-based single crystal superalloy DD5[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101:71-85
[10] 蔡明, 巩亚东, 屈硕硕, 等. 镍基单晶高温合金磨削表面质量及亚表面微观组织试验[J]. 东北大学学报, 2019, 40(3):85-90 CAI Ming, GONG Yadong, QU Shuoshuo, et al. Morphology simulation and experimental study on micro-grinding of nickel-based single crystal superalloy[J]. Journal of Northeastern University, 2019, 40(3):85-90(in Chinese)
[11] 顾玉栊. 刚玉砂轮缓进深切磨削加工镍基单晶合金叶片榫头研究[D]. 南京:南京航空航天大学, 2019 GU Yulong. Creep-feed deep grinding of nickel-based single crystal superalloy blade tenon with corundum abrasive wheels[D]. Nanjing:Nanjing University of Aeronautics & Astronautics, 2019(in Chinese)
[12] BHADURI D, SOO S L, ASPINWALL D K, et al. A study on ultrasonic assisted creep feed grinding of nickel based superalloys[J]. Procedia CIRP, 2012, 1:376-381
[13] HOOD R, COOPER P, ASPINWALL S L, et al. Creep feed grinding of γ-tial using single layer electroplated diamond superabrasive wheels[J]. CIRP Journal of Manufacturing Science and Technology, 2015, 11:36-44
[14] RABIEY M, MAERCHY P. Investigation on surface integrity of steel DIN 100Cr6 by grinding using CBN tool[J]. Procedia CIRP, 2020, 87:192-197
[15] 苏旭峰. 高温合金无论叶片缓进磨削工艺研究[D]. 上海:上海交通大学, 2009 SU Xufeng. Study of creep grinding on superalloy for turbine blade[D]. Shanghai:Shanghai Jiaotong University, 2009