论文:2022,Vol:40,Issue(1):141-147
引用本文:
赵昌葆, 曹猛, 薛红前, 胡宗浩, 周志强, 孟庆实, 王朔. 石墨烯纳米片对碳纤维增强金属层板层间力学性能的影响[J]. 西北工业大学学报
ZHAO Changbao, CAO Meng, XUE Hongqian, HU Zonghao, ZHOU Zhiqiang, MENG Qingshi, WANG Shuo. Effect of graphene nanosheets on interlaminar mechanical properties of carbon fiber reinforced metal laminates[J]. Northwestern polytechnical university

石墨烯纳米片对碳纤维增强金属层板层间力学性能的影响
赵昌葆1, 曹猛1, 薛红前2, 胡宗浩3, 周志强3, 孟庆实1, 王朔1,2
1. 沈阳航空航天大学 航空宇航学院, 辽宁 沈阳 110136;
2. 西北工业大学 机电学院, 陕西 西安 710072;
3. 沈阳飞机设计研究所, 辽宁 沈阳 110035
摘要:
提出一种新的方法,用来改善碳纤维增强金属板(CARALL)的层间黏结强度。将不同质量分数(0,0.1%,0.3%,0.5%和1.0%)的石墨烯纳米片(GnPs)利用超声分散的方法使其均匀分散于环氧树脂中,并利用湿法铺层方法完成CARALL的制作。进行Ⅰ型断裂韧性的测试,探究GnPs对CARALL层间性能的影响,并进行CARALL的拉伸与弯曲性能测试,研究GnPs对CARALL力学性能的影响。通过SEM与光学图像观察GnPs的增强机制与CARALL试件的失效模式。结果表明,当GnPs的添加量为0.5%时,CARALL具有最佳的层间黏结强度与力学性能。当添加0.5% GnPs时,Ⅰ型断裂韧性提高79%;拉伸强度、弹性模量与断裂应变率分别提高14.5%,11.0%和15.5%;弯曲强度与弯曲应变率分别提高23.9%和81.5%。这是由于添加GnPs到环氧树脂中可以分散CARALL所承受载荷,并利用自身的断裂、拔出和脱黏等机制吸收能量,进一步改善CARALL的层间力学性能。
关键词:    碳纤维增强金属层板    石墨烯纳米片    层间性能    力学性能    强化机制   
Effect of graphene nanosheets on interlaminar mechanical properties of carbon fiber reinforced metal laminates
ZHAO Changbao1, CAO Meng1, XUE Hongqian2, HU Zonghao3, ZHOU Zhiqiang3, MENG Qingshi1, WANG Shuo1,2
1. College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China;
2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
3. Shenyang Aircraft Design Institute, Shenyang 110035, China
Abstract:
Aiming at the problem of weak bond strength between CARALL metal/resin/fiber layers, this paper proposes a new preparation method to improve the bond strength between CARALL layers. In this method, Graphene platelets (GnPs) with different mass fractions (0%,0.1%,0.3%,0.5% and 1.0%) are uniformly dispersed in epoxy resin by ultrasonic dispersion method, and using the wet layup method completes the production of CARALL. Carry out the I type fracture toughness test, explore the influence of GnPs on the CARALL interlaminar performance, and carry out the test of the tensile and flexural properties of CARALL to study the influence of GnPs on the mechanical properties of CARALL. The enhancement mechanism of GnPs and the failure mode of CARALL specimens were observed by SEM and optical images. The results show that when the amount of GnPs added is 0.5%, CARALL has the best interlaminar strength and mechanical properties. When 0.5% GnPs is added, the type I fracture toughness is increased by 79%; the tensile strength, Young's modulus, and strain rate at break are increased by 14.5%,11.0%, and 15.5%, respectively; the flexural strength and flexural strain rate are increased by 20.5% and 89.7%, respectively. This is because adding GnPs to the epoxy resin can disperse the load carried by CARALL, and use its own fracture, pull-out and debonding mechanisms to absorb energy, and further improve the interlayer mechanical properties of CARALL.
Key words:    carbon-reinforced aluminum laminates    graphene platelets    interface properties    mechanical properties    strengthening mechanism    
收稿日期: 2021-06-03     修回日期:
DOI: 10.1051/jnwpu/20224010141
基金项目: 国家自然科学基金(51973123)、航空科学基金(2018ZF54036,2020Z055054002)与辽宁省教育厅科研基金(JYT2020007)资助
通讯作者: 王朔(1984—),沈阳航空航天大学副教授,主要从事航空复合材料结构性能研究。e-mail:shuowang@sau.edu.cn。     Email:shuowang@sau.edu.cn。
作者简介: 赵昌葆(1974—),沈阳航空航天大学副教授,主要从事先进制造技术研究。
相关功能
PDF(3565KB) Free
打印本文
把本文推荐给朋友
作者相关文章
赵昌葆  在本刊中的所有文章
曹猛  在本刊中的所有文章
薛红前  在本刊中的所有文章
胡宗浩  在本刊中的所有文章
周志强  在本刊中的所有文章
孟庆实  在本刊中的所有文章
王朔  在本刊中的所有文章

参考文献:
[1] SINMAZÇELIK T, AVCU E, BORA MÖ, et al. A review:fibre metal laminates, background, bonding types and applied test methods[J]. Materials & Design, 2011, 32:3671-3685
[2] ABOUHAMZEH M, SINKE J, BENEDICTUS R. Investigation of curing effects on distortion of fibre metal laminates[J]. Composite Structures, 2015, 122:546-552
[3] ALI A, PAN L, DUAN L, et al. Characterization of seawater hygrothermal conditioning effects on the properties of titanium-based fiber-metal laminates for marine applications[J]. Composite Structures, 2016, 158:199-207
[4] KROLLMANN J, SCHREYER T, VEIDT M, et al. Impact and post-impact properties of hybrid-matrix laminates based on carbon fiber-reinforced epoxy and elastomer subjected to low-velocity impacts[J]. Composite Structures, 2019, 208:535-545
[5] BIENIAS J, DADEJ K, SUROWSKA B. Interlaminar fracture toughness of glass and carbon reinforced multidirectional fiber metal laminates[J]. Engineering Fracture Mechanics, 2017, 175:127-145
[6] PÄRNÄNEN T, KANERVA M, SARLIN E, et al. Debonding and impact damage in stainless steel fibre metal laminates prior to metal fracture[J]. Composite Structures, 2015, 119:777-786
[7] PAN L, ALI A, WANG Y, et al. Characterization of effects of heat treated anodized film on the properties of hygrothermally aged AA5083-based fiber-metal laminates[J]. Composite Structures, 2017, 167:112-122
[8] AGHAMOHAMMADI H, ESLAMI-FARSANI R, TCHARKHTCHI A. The effect of multi-walled carbon nanotubes on the mechanical behavior of basalt fibers metal laminates:an experimental study[J]. International Journal of Adhesion and Adhesives, 2020, 98:102538
[9] KHORAMISHAD H, ALIKHANI H, DARIUSHI S. An experimental study on the effect of adding multi-walled carbon nanotubes on high-velocity impact behavior of fiber metal laminates[J]. Composite Structures, 2018, 201:561-569
[10] ZHANG X, HU Y, LI H, et al. Effect of multi-walled carbon nanotubes addition on the interfacial property of titanium-based fiber metal laminates[J]. Polymer Composites, 2018, 39:1159-1168
[11] 李红丽, 张娴, 李华冠, 等. 多壁碳纳米管对Ti-碳纤维/反应型聚酰亚胺超混杂层板力学性能的影响[J]. 复合材料学报, 2020, 37:581-590 LI Hongli, ZHANG Xian, LI Huaguan, et al. Effect of multi-walled carbon nanotubes on the mechanical properties of Ti-carbon fiber/reactive polyimide super-hybrid laminates[J]. Acta Materiae Compositae Sinica, 2020, 37:581-590(in Chinese)
[12] SALOM C, PROLONGO M G, TORIBIO A, et al. Mechanical properties and adhesive behavior of epoxy-graphene nanocomposites[J]. International Journal of Adhesion and Adhesives, 2018, 84:119-125
[13] HAN S, MENG Q, ARABY S. Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives:experimental and numerical analysis[J]. Composites Part A:Applied Science and Manufacturing, 2019,120:116-126
[14] JIA Z, FENG X, ZOU Y. An investigation on mode II fracture toughness enhancement of epoxy adhesive using graphene nanoplatelets[J]. Composites Part B:Engineering, 2018, 155:452-456
[15] KERNIN A, WAN K, LIU Y, et al. The effect of graphene network formation on the electrical, mechanical, and multifunctional properties of graphene/epoxy nanocomposites[J]. Composites Science and Technolog, 2019, 169:224-231
[16] JIA Z, FENG X, ZOU Y. Graphene reinforced epoxy adhesive for fracture resistance[J]. Composites Part B:Engineering, 2018, 155:457-462
[17] LI L, LANG L, KHAN S, et al. Investigation into effect of the graphene oxide addition on the mechanical properties of the fiber metal laminates[J]. Polymer Testing, 2020, 91:106766