论文:2022,Vol:40,Issue(1):134-140
引用本文:
刘昕沛, 李洋, 赵阳国, 付玉彬. 沉积物掩埋程度对海洋微生物燃料电池阴极电化学性能的影响[J]. 西北工业大学学报
LIU Xinpei, LI Yang, ZHAO Yangguo, FU Yubin. Effect of sediment embedding ratio on the cathode electrochemical performance in marine microbial fuel cells on ocean floor[J]. Northwestern polytechnical university

沉积物掩埋程度对海洋微生物燃料电池阴极电化学性能的影响
刘昕沛1,2, 李洋1, 赵阳国2, 付玉彬1
1. 中国海洋大学 材料科学与工程学院, 山东 青岛 266100;
2. 中国海洋大学 环境科学与工程学院, 山东 青岛 266100
摘要:
海洋沉积物微生物燃料电池(MSMFCs)在海底产电并长期驱动传感器运行过程中,悬浮于水体中阴极易被海底沉积物掩埋从而影响产电性能,导致电池失效。在实验室中模拟沉积物分别掩埋1/3,1/2和2/3电池阴极,探究阴极电化学性能和电池产电规律。结果表明:随着阴极被沉积物掩埋程度增加,开路电位逐渐降低,而需要稳定的时间增加;阴极电容逐渐减小,最小电容降至32 F/cm2,是未掩埋对照组的0.72倍;动力学活性先降后升,最大活性为对照组的1.61倍(2/3组)。掩埋过程中,MSMFCs产电性能未受影响,最大功率密度达140.83 mW/m2(1/3组),是对照组的1.21倍。可见,随着阴极被海底沉积物掩埋程度的增加,尽管阴极电化学性能下降、电池产电性能出现波动,但MSMFCs仍可正常工作。
关键词:    海洋沉积物微生物燃料电池    阴极    掩埋程度    电化学性能    产电性能   
Effect of sediment embedding ratio on the cathode electrochemical performance in marine microbial fuel cells on ocean floor
LIU Xinpei1,2, LI Yang1, ZHAO Yangguo2, FU Yubin1
1. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China;
2. School of Environment Science and Engineering, Ocean University of China, Qingdao 266100, China
Abstract:
In the long-term electricity generation and driving sensor work process of marine sediment microbial fuel cells(MSMFCs), its cathode in the seawater may be embedded into the marine sediment, which will affect the electrochemical performance and lead to MSMFCs failure. The article simulated the embedding ratio of cathodes in sediment in the laboratory:1/3, 1/2, 2/3, in order to investigate the changes of the electrochemical performance of the cathode and the electricity generation performance of MSMFCs. The results show that:the open circuit potential dropped and the required longer steady time with the higher embedding ratio of the cathode. Its capacitance decreased gradually, and the minimum capacitance was 32 F/cm2 (2/3 group), which was 0.72 times of the Blank. The kinetic activity decreased firstly and then increased, and its maximum activity was 1.61 times of the Blank (2/3 group); The maximum power density of the MSMFCs was 140.83 mW/m2 (1/3 group), which was 1.21 times of the Blank. With the increase of embedding ratio of the cathode in the marine sediment, its electrochemical performance and electricity generation performance of MSMFCs both fluctuates, but the normal operation of MSMFCs can still be ensured.
Key words:    marine sediment microbial fuel cells    cathode    the embedding ratio    electrochemical performance    electricity generation performance    
收稿日期: 2021-01-27     修回日期:
DOI: 10.1051/jnwpu/20224010134
基金项目: 国家自然科学基金(22075262)、国防科技创新特区项目(18-H863-05-ZT-002-013-01)资助
通讯作者: 付玉彬(1968—),中国海洋大学教授,主要从事海洋新能源材料及海洋传感器探测新技术研究。e-mail:ffyybb@ouc.edu.cn     Email:ffyybb@ouc.edu.cn
作者简介: 刘昕沛(1997—),中国海洋大学硕士研究生,主要从事海洋新能源材料研究。
相关功能
PDF(2114KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘昕沛  在本刊中的所有文章
李洋  在本刊中的所有文章
赵阳国  在本刊中的所有文章
付玉彬  在本刊中的所有文章

参考文献:
[1] REIMERS C E, TENDER L M, FERTIG S, et al. Harvesting energy from the marine sediment-water interface[J]. Environmental Science & Technology, 2001, 35(1):192-195
[2] VANDIEKEN V, FINKE N, THAMDRUP B. Hydrogen, acetate, and lactate as electron donors for microbial manganese reduction in a manganese-rich coastal marine sediment[J]. FEMS Microbiology Ecology, 2014, 87(3):733-745
[3] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells:methodology and technology[J]. Environmental Science & Technology, 2006, 40(17):5181-5192
[4] HE Z, SHAO H, ANGENENT L T. Increased power production from a sediment microbial fuel cell with a rotating cathode[J]. Biosensors and Bioelectronics, 2007, 22(12):3252-3255
[5] 付玉彬, 李建海, 赵仲凯, 等. 海底生物燃料电池作为电源驱动小型电子器件的应用研究[J]. 中国海洋大学学报, 2012, 42(6):93-98 FU Yubin, LI Jianhai, ZHAO Zhongkai, et al. Application research of marine sediment microbial fuel cell as power supply to drive small electronic equipments[J]. Periodical of Ocean University of China, 2012,42(6):93-98(in Chinese)
[6] ZHOU C, FU Y, ZHANG H, et al. Structure design and performance comparison of large-scale marine sediment microbial fuel cells in lab and real sea as power source to drive monitoring instruments for long-term work[J]. Ionics, 2018, 24(3):797-805
[7] 谢焰, 周静, 沈杰, 等. 纤维层厚和叉指电极间距对MFC电输出性能的影响[J]. 硅酸盐通报, 2017,36(12):4193-4197 XIE Yan, ZHOU Jing, SHEN Jie, et al. Influence of fiber thickness and spacing between interdigitated electrodes on MFC's electricity output performance[J]. Bulletin of the Chinese Ceramic Society, 2017,36(12):4193-4197(in Chinese)
[8] AN J, KIM B, NAM J, et al. Comparison in performance of sediment microbial fuel cells according to depth of embedded anode[J]. Bioresource Technology, 2013, 127:138-142
[9] WANG Y, WEN Q, CHEN Y, et al. A novel polyaniline interlayer manganese dioxide composite anode for high-performance microbial fuel cell[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75:112-118
[10] THOMAS Y R J, PICOT M, CARER A, et al. A single sediment-microbial fuel cell powering a wireless telecommunication system[J]. Journal of Power Sources, 2013, 241:703-708
[11] YANG X, CHEN S. Microorganisms in sediment microbial fuel cells:ecological niche, microbial response, and environmental function[J]. Science of the Total Environment, 2020, 756(19):144145
[12] LAM B R, BARR C R, ROWE A R, et al. Differences in applied redox potential on cathodes enrich for diverse electrochemically active microbial isolates from a marine sediment[J]. Frontiers in Microbiology, 2019, 10:1979
[13] DELONG E F. Microbial life breathes deep[J]. Science, 2004, 306(5705):2198-2200
[14] REIMERS C E, GIRGUIS P, STECHER H A, et al. Microbial fuel cell energy from an ocean cold seep[J]. Geobiology, 2006, 4(2):123-136
[15] ALGAR C K, HOWARD A, WARD C, et al. Sediment microbial fuel cells as a barrier to sulfide accumulation and their potential for sediment remediation beneath aquaculture pens[J]. Scientific Reports, 2020, 10(1):1-12
[16] CLAUWAERT P, RABAEY K, AELTERMAN P, et al. Biological denitrification in microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9):3354-3360
[17] XU H, WU J, QI L, et al. Preparation and microbial fuel cell application of sponge-structured hierarchical polyaniline-texture bioanode with an integration of electricity generation and energy storage[J]. Journal of Applied Electrochemistry, 2018, 48(11):1285-1295
[18] LAM B R, ROWE A R, NEALSON K H. Variation in electrode redox potential selects for different microorganisms under cathodic current flow from electrodes in marine sediments[J]. Environmental Microbiology, 2018, 20(6):2270-2287