论文:2022,Vol:40,Issue(1):25-32
引用本文:
王东, 黄河源, 徐一新, 赵美英. 高温环境下钛合金点阵结构热力耦合性能与失效机理研究[J]. 西北工业大学学报
WANG Dong, HUANG Heyuan, XU Yixin, ZHAO Meiying. Study on thermal-mechanical coupling performance and failure mechanism of titanium alloy lattice structures in high temperature environment[J]. Northwestern polytechnical university

高温环境下钛合金点阵结构热力耦合性能与失效机理研究
王东1, 黄河源1,2, 徐一新1, 赵美英1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 中国飞机强度研究所, 陕西 西安 710065
摘要:
设计并采用3D打印技术制备了单级Kagome、单级金字塔和多级金字塔3类点阵结构单胞试件,开展常温(25℃)和高温(350℃)环境下的面外压缩试验测试和数值仿真分析,阐明了胞元数目、结构形式与结构层级3个设计参数对点阵结构面外承载能力的影响规律,进而揭示了点阵结构的热力耦合性能和损伤失效机理。研究结果表明,Kagome点阵承载能力随胞元数目增加呈线性递增关系,验证了采用单胞元代替多胞元开展相关研究的合理性。进一步分析表明,3种点阵结构失效模式均为内部芯子屈曲导致结构整体失效,同时结构层级对点阵力学性能影响最为显著。由于加入二级芯子,多级金字塔点阵单胞具有更大的换热表面积和承载能力:在同等质量下,内部芯子换热表面积相对于单级点阵单胞增加131.9%,在25℃和350℃下的极限载荷相对单级点阵单胞分别增加18.4%和23.0%。同时,由于增大换热表面积,多级点阵相对Kagome和单级点阵的承载能力受高温影响更小。
关键词:    点阵    多级结构    热力耦合    试验测试    数值仿真   
Study on thermal-mechanical coupling performance and failure mechanism of titanium alloy lattice structures in high temperature environment
WANG Dong1, HUANG Heyuan1,2, XU Yixin1, ZHAO Meiying1
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Aircraft Strength Research Institute of China, Xi'an 710065, China
Abstract:
Three types of lattice structure unit cell specimens of kagome, single-stage pyramidal and multistage pyramidal were designed and manufactured by using 3D printing technology, out-of-plane compression tests and numerical simulations in the room temperature environments of 25℃ and high temperature of 350℃ were carried out. The analysis clarified the influence of the three design parameters of cell number, structure form and structure level on the out-of-plane load-bearing capacity of the lattice structure, and revealed the thermal-mechanical coupling performance and failure mechanism of the lattice structures. The results show that the carrying capacity of the kagome lattice increases linearly with the number of cells, which verifies the rationality to use single cells instead of multiple cells to carry out related research. Further analysis showed that the failure mode of three lattice structures was all internal core buckling leading to the overall failure of the structure, and the structural level has the most significant impact on the mechanical properties of the lattice. Due to the addition of the secondary core, the multistage pyramidal lattice structure has a larger heat transfer surface area and load-bearing capacity:under the same weight, the internal core heat transfer surface area increased by 131.9% comparing with the single-stage lattice structure, and at 25℃ and 350℃, the ultimate load of single-stage lattice structure increased by 18.4% and 23% respectively. At the same time, due to the increase in heat transfer surface area, the bearing capacity of the multistage lattice unit cell was slightly affected by high temperature than the kagome and single-stage lattice unit cells.
Key words:    lattice    multistage structure    thermal-mechanical coupling    experimental test    numerical simulation   
收稿日期: 2021-05-08     修回日期:
DOI: 10.1051/jnwpu/20224010025
基金项目: 2020年陕西省创新人才推进计划-青年科技新星项目(2020KJXX-067)与2021年陕西省自然科学基础研究计划(2021JQ-084)资助
通讯作者: 黄河源(1988—),西北工业大学助理研究员,主要从事飞行器结构设计研究。e-mail:huangheyuan@nwpu.edu.cn     Email:huangheyuan@nwpu.edu.cn
作者简介: 王东(1998—),西北工业大学硕士研究生,主要从事飞行器结构设计研究。
相关功能
PDF(3606KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王东  在本刊中的所有文章
黄河源  在本刊中的所有文章
徐一新  在本刊中的所有文章
赵美英  在本刊中的所有文章

参考文献:
[1] 廖孟豪. 2018年度国外高超声速飞行器发展动向[J]. 飞航导弹, 2019(3):1-4 LIAO Menghao. Development trend of foreign hypersonic vehicles in 2018[J]. Flying Missile, 2019(3):1-4(in Chinese)
[2] CHEN Fang, LIU Hong, ZHANG Shengtao. Time-adaptive loosely coupled analysis on fluid-thermal-structural behaviors of hypersonic wing structures under sustained aeroheating[J]. Aerospace Science and Technology, 2018, 78:620-636
[3] 徐世南, 吴催生. 高超声速飞行器热防护结构研究进展[J]. 飞航导弹, 2019(4):48-55 XU Shinan, WU Cuisheng. Research progress of hypersonic vehicle thermal protection structure[J]. Flying Missile, 2019(4):48-55(in Chinese)
[4] SCHAEDLER T A, JACOBSEN A J, TORRENTS A, et al. Ultralight metallic microlattices[J]. Science, 2011, 334(6058):962-965
[5] YANG Guangmeng, HOU Chi, ZHAO Meiying, et al. Comparison of convective heat transfer for Kagome and tetrahedral truss-cored lattice sandwich panels[J]. Scientific Reports, 2019, 9(11):3731
[6] ZHANG Guoqi, MA Li, WANG Bing, et al. Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores[J]. Composites Part B, 2012, 43(2):471-476
[7] QI Ge, JI Bin, MA Li. Mechanical response of pyramidal lattice truss core sandwich structures by additive manufacturing[J]. Mechanics of Advanced Materials and Structures, 2019, 26(15):1298-1306
[8] ZHANG Qian, JIANG Wenchun, ZHANG Yanting, et al. Compression, shear and bending performance of X-type lattice truss panel structure by theoretical method and simulation[J], International Journal of Steel Structures, 2020(20):259-271
[9] HOU Chi, YANG Guangmeng, WAN Xiaopeng, et al. Study of thermo-fluidic characteristics for geometric-anisotropy Kagome truss-cored lattice[J]. Chinese Journal of Aeronautics, 2019, 32(7):1633-1645
[10] WANG Zhenwei, LUAN Congcong, LIAO Guangxin, et al. Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure[J]. Composites Part B, 2019, 176:107215
[11] LI Xiaodong, WU Linzhi, MA Li, et al. Compression and shear response of carbon fiber composite sandwich panels with pyramidal truss cores after thermal exposure[J]. Mechanics of Advanced Materials and Structures, 2019, 26(10):866-877
[12] WANG Shubin, LI Weiguo, TAO Yong, et al. Investigation on the temperature dependent out-of-plane quasi-static compressive behavior of metallic honeycombs[J]. Thin-Walled Structures, 2020, 149:166625
[13] KOOISTRA Gregory W, DESHPANDE Vikram, WADLEY Haydn N G. Hierarchical corrugated core sandwich panel concepts[J]. Journal of Applied Mechanics, 2007, 74(2):259-268
[14] FAN Hualin, QU Zhanxin, XIA Zhicheng, et al. Designing and compression behaviors of ductile hierarchical pyramidal lattice composites[J]. Materials & Design, 2014, 58:363-367
[15] YIN Sha, WU Linzhi, NUTT Steven R. Compressive efficiency of stretch-stretch-hybrid hierarchical composite lattice cores[J]. Materials & Design(1980-2015), 2014, 56:731-739
[16] WU Qianqian, VAZIRI Ashkan, ASL Mohamad Eydani, et al. Lattice materials with pyramidal hierarchy:systematic analysis and three dimensional failure mechanism maps[J]. Journal of the Mechanics and Physics of Solids, 2019, 125:112-144
[17] WU Qianqian, GAO Ying, WEI Xingyu, et al. Mechanical properties and failure mechanisms of sandwich panels with ultra-lightweight three-dimensional hierarchical lattice cores[J]. International Journal of Solids and Structures, 2018, 132/133:171-187
[18] ZHANG Zhong, LEI Hongshuai, XU Mengchuan, et al. Out-of-plane compressive performance and energy absorption of multi-layer graded sinusoidal corrugated sandwich panels[J]. Materials & Design, 2019, 178, 107858
[19] 马良,马玉娥,秦强. 热力耦合下不同加筋壁板稳定性分析[J]. 西北工业大学学报,2020,38(1):40-47 MA Liang, MA Yu'e, QIN Qiang. Stability analysis of different stiffened plates in thermal-mechanical coupling environments[J]. Journal of Northwestern Polytechnical University, 2020, 38(1):40-47(in Chinese)
[20] 赵佳音. Riks弧长法在压杆非线性屈曲分析中的应用[J]. 船舶标准化工程师, 2021,54(1):67-70 ZHAO Jiayin. Application of Riks arc length method in non-linear buckling analysis of compressive rods[J]. Ship Standardization Engineer, 2021, 54(1):67-70(in Chinese)
[21] REN Junxue, CAI Ju, ZHOU Jinhua, et al. Inverse determination of improved constitutive equation for cutting titanium alloy Ti-6Al-4V based on finite element analysis[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(9/10/11/12):3671-3682
[22] 刘旭阳. TC4钛合金动态本构关系研究[D]. 南京:南京航空航天大学, 2010 LIU Xuyang. Research on dynamic constitutive relationship of TC4 titanium alloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010(in Chinese)
[23] 《中国航空材料手册》编辑委员会编. 中国航空材料手册:第四卷, 钛合金、铜合金[M]. 北京:中国标准出版社, 2001:104-131《China Aviation Materials Handbook》 Editorial Committee. China aviation materials handbook:volume Ⅳ, titanium alloys and copper alloys[M]. Beijing:China Standard Press, 2001:104-131(in Chinese)