论文:2022,Vol:40,Issue(1):18-24
引用本文:
王科雷, 周洲, 张阳. 分布式推进翼身融合飞行器气动特性研究[J]. 西北工业大学学报
WANG Kelei, ZHOU Zhou, ZHANG Yang. Aerodynamic characteristics research of a distributed propulsion blended-wing-body aircraft[J]. Northwestern polytechnical university

分布式推进翼身融合飞行器气动特性研究
王科雷, 周洲, 张阳
西北工业大学 航空学院, 陕西 西安 710072
摘要:
基于下一代民用客机发展研究背景,针对某特种布局分布式推进翼身融合飞行器,采用数值仿真与风洞试验相结合的方法对其纵向气动特性及失速机理进行分析研究。介绍了该分布式推进翼身融合飞行器的气动构型及数值模型方法,针对当前翼身融合飞行器有无分布式动力影响下的纵向气动特性进行了对比分析,基于当前翼身融合飞行器无动力缩比模型风洞试验,在对数值模型方法进行校验的同时,结合流场显示结果对其大迎角失速发展过程中的流动机理进行分析研究。结果表明:当前分布式推进翼身融合体的分布式动力匣平台区域前缘展向流动是诱导失速发生的主要因素,但中部机身在大迎角下仍能够提供足够大的升力维持飞行,而分布式动力抽吸对于翼上流动具有较为明显的梳理作用,可以用于控制和改善翼身融合飞行器大迎角失速特性。
关键词:    分布式推进翼身融合飞行器    数值模拟    风洞试验    流场显示    流动机理   
Aerodynamic characteristics research of a distributed propulsion blended-wing-body aircraft
WANG Kelei, ZHOU Zhou, ZHANG Yang
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
According to the development and research background of the next generation civil aircraft, the aerodynamic characteristics and stall mechanism of a specified distributed propulsion (DP) blended-wing-body (BWB) aircraft are analyzed and studied by combining the numerical simulation and the wind tunnel tests. Firstly, the DP BWB configuration and the numerical simulation methods are introduced. Secondly, the aerodynamic performance of the DP BWB aircraft between with and without the DP induced effects into consideration are compared and analyzed by using the numerical simulation. Finally, the stall mechanism is sorted out based on the wind tunnel flow-field visualization, and at the same time, the numerical simulation method is also validated. The results show that the span-wise flow along the leading edge (LE) of the plane platform for DP installation is the main factor to induce stall at high angle of attack (AOA), while the middle fuselage can still provide enough lift to maintain flight at high angle of attack, and the DP system has an obvious combination effect on the flow on the wing, which maybe is an effective way to control and improve the BWB stall characteristics at high AOA.
Key words:    distributed propulsion blended-wing-body aircraft    numerical simulation    wind tunnel test    flow-field visualization    flow mechanism   
收稿日期: 2021-05-10     修回日期:
DOI: 10.1051/jnwpu/20224010018
基金项目: 陕西省重点研发计划(2021ZDLGY09-08)资助
通讯作者:     Email:
作者简介: 王科雷(1991—),西北工业大学助理研究员,主要从事飞行器总体设计、气动布局设计研究。e-mail:craig-wang@nwpu.edu.cn
相关功能
PDF(2516KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王科雷  在本刊中的所有文章
周洲  在本刊中的所有文章
张阳  在本刊中的所有文章

参考文献:
[1] LIOU M S, KIM H, LIOU M F. Challenges and progress in aerodynamic design of hybrid wing body aircraft with embedded engines[R]. NASA/TM-2016-218309
[2] HYOUNGJUN K, MENGSING L. Flow simulation and optimal shape design of N3-X hybrid wing body configuration using a body force method[J]. Aerospace Science and Technology, 2017, 71:661-674
[3] 王刚, 张彬乾, 张明辉, 等. 翼身融合民机总体气动技术研究进展与展望[J]. 航空学报, 2019, 40(9):623046 WANG Gang, ZHANG Binqian, ZHANG Minghui, et al. Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):623046(in Chinese)
[4] RUDI K, LORENZO R, ANDREW R, et al. An assessment of distributed propulsion:part B-advanced propulsion system architectures for blended wing body aircraft configurations[J]. Aerospace Science and Technology, 2016, 50:212-219
[5] ANDREW T W, JOHN R H, CHRISTOPHER J H, et al. Integrated aerodynamic benefits of distributed propulsion[R]. AIAA-2015-1500
[6] MICHAEL F K. Aero-propulsive coupling of an embedded, distributed propulsion system[R]. AIAA-2015-3162
[7] AARON T P, PHILLIP J A, MICHAEL F K. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[J]. Journal of Aircraft, 2018, 55(6):2414-2426
[8] RISCH T, COSENTINO G, REGAN C, et al. X-48B flight test progress overview[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, Reston, 2009
[9] CARTER M, VICROY D, PATEL D. Blended-wing-body transonic aerodynamics:Summary of ground tests and sample results (invited)[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, Reston, 2009
[10] OLIVERIO E. Preliminary investigation on stall characteristics of a regional BWB for low speed approach[C]//35th AIAA Applied Aerodynamic Conference, Reston, 2017
[11] 付军泉, 史志伟, 周梦贝, 等. 一种翼身融合飞行器的失速特性研究[J]. 航空学报, 2020, 41(1):123176 FU Junquan, SHI Zhiwei, ZHOU Mengbei, et al. Stall characteristics research of blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123176(in Chinese)
[12] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605