论文:2022,Vol:40,Issue(1):1-17
引用本文:
雷煜东, 詹梅, 樊晓光, 张媛琦, 牛浩通, 白丹妮, 高鹏飞, 郑泽邦. 带筋薄壁构件成形制造技术的发展与展望[J]. 西北工业大学学报
LEI Yudong, ZHAN Mei, FAN Xiaoguang, ZHANG Yuanqi, NIU Haotong, BAI Danni, GAO Pengfei, ZHENG Zebang. A review on manufacturing technologies of thin-walled components with ribs[J]. Northwestern polytechnical university

带筋薄壁构件成形制造技术的发展与展望
雷煜东, 詹梅, 樊晓光, 张媛琦, 牛浩通, 白丹妮, 高鹏飞, 郑泽邦
西北工业大学 材料学院, 陕西 西安 710072
摘要:
作为空天和武器等高端装备关键结构的带筋薄壁构件,其整体化成形制造是实现装备轻质化并提升其性能的有效途径。根据带筋薄壁构件的发展,对其进行分类,以壁板类与筒/环类构件为出发点,归纳了2类带筋构件成形制造工艺与研究进展。针对筋板类构件,概述了传统制造技术、整体加载近净塑性成形技术和局部加载近净塑性成形技术的发展历程,进一步从加工原理、技术和工装等方面对3类技术进行了综述,并对比了几种主要成形工艺的特点与构件性能的差异。对筋筒/环类构件,综述了挤压、旋压、包络成形等典型塑性成形制造工艺的最新进展,并对比了各类工艺的技术特色与拓展潜力。基于研究进展分析,总结了带筋薄壁构件成形制造技术的发展趋势与所面临的挑战。
关键词:    带筋薄壁构件    筋板类构件    筋筒/环类构件    整体制造    塑性成形    局部加载   
A review on manufacturing technologies of thin-walled components with ribs
LEI Yudong, ZHAN Mei, FAN Xiaoguang, ZHANG Yuanqi, NIU Haotong, BAI Danni, GAO Pengfei, ZHENG Zebang
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
As key structural parts of aerospace and weaponry, the integrated manufacturing of thin-walled components with ribs is an effective method to achieve the lightweight of high-end equipment and improve its performance. According to the development of thin-walled components with ribs, it was classified in this paper. Based on panel and cylindrical/ring parts, the research progress of manufacturing technology of two types of ribbed components were summarized. With regard to the rib-web parts, the development history of traditional forming technology, integral near-net plastic forming technology and local loading near-net plastic forming technology were reviewed. Then, the above three kinds of technology of processing theory, technology and tooling were discussed, and the characteristics of manufacturing and the differences in component performance were compared. For the cylindrical/ring parts with ribs, the latest research progress of extrusion, spinning and envelope forming on component manufacturing were reviewed, and the technical characteristics and development potential of various processes were compared. Based on the analysis of the above research, the development trend and technical challenges of manufacturing technology of thin-walled components with ribs were summarized.
Key words:    thin-walled components with ribs    rib-web parts    cylindrical/ring parts with ribs    integral forming    plastic forming    local loading forming   
收稿日期: 2021-10-22     修回日期:
DOI: 10.1051/jnwpu/20224010001
基金项目: 国家自然科学基金(52130507)、国家重点研发计划(2020YFA0711103,2021YFB3400900)、国家自然科学基金优秀青年科学基金(52122509)与国家自然科学基金重大研究计划培育项目(91860130)资助
通讯作者: 詹梅(1972—),女,西北工业大学教授,主要从事高性能轻量化精确塑性成形理论与技术研究。e-mail:zhanmei@nwpu.edu.cn     Email:zhanmei@nwpu.edu.cn
作者简介: 雷煜东(1992—),西北工业大学博士研究生,主要从事带筋构件旋压成形成性调控研究。
相关功能
PDF(6073KB) Free
打印本文
把本文推荐给朋友
作者相关文章
雷煜东  在本刊中的所有文章
詹梅  在本刊中的所有文章
樊晓光  在本刊中的所有文章
张媛琦  在本刊中的所有文章
牛浩通  在本刊中的所有文章
白丹妮  在本刊中的所有文章
高鹏飞  在本刊中的所有文章
郑泽邦  在本刊中的所有文章

参考文献:
[1] 叶景申, 张宝红, 于建民, 等. 筋板类构件成形技术研究进展[J]. 锻压装备与制造技, 2015, 50(2):7-10 YE Jingshen, ZHANG Baohong, YU Jianmin, et al. Research progress of component with rib forming technology[J]. China Metal Forming Equipment & Manufacturing Technology, 2015, 50(2):7-10(in Chinese)
[2] MUNROE J, WILKINS K, GRUBER M. Integral airframe structures(IAS)-validated feasibility study of integrally stiffened metallic fuselage panels for reducing manufacturing costs[R]. NASA/CR-2000-209337, 2000
[3] SHENG Z Q, SHIVPURI R. A hybrid process for forming thin-walled magnesium parts[J]. Materials Science & Engineering A, 2006, 428(1/2):180-187
[4] 阿尔坦. 现代锻造(设备,材料和工艺)[M]. 陆索,译. 北京:国防工业出版社,1982:199-200 ALTAN T. Forging equipment, materials ans practices[M]. LU Suo, Trans. Beijing:National Defense Industry Press, 1982:199-200(in Chinese)
[5] WELSCHOF K, KOPP R. Incremental forging-a flexible forming technology which improves energy and material efficiency[J]. Aluminium, 1987, 63(2):168-172
[6] KOPP R, SCHAEFFER L, SCHULER G. Incremental forging with integrated open-die-forging presses[J]. MPT Metallurgical Plant and Technology, 1982, 5(6):78-81
[7] YANG H. Creep age forming investigation on aluminum alloy 2219 and related studies[D]. London:Imperial College London, 2013
[8] NGHIEP T N, SARHAN A A D, AOYAMA H. Analysis of tool deflection errors in precision CNC end milling of aerospace aluminum 6061-T6 alloy[J]. Measurement, 2018, 125:476-495
[9] SUN Y, JIANG S. Predictive modeling of chatter stability considering force-induced deformation effect in milling thin-walled parts[J]. International Journal of Machine Tools and Manufacture, 2018, 135:38-52
[10] LI B, JIANG X, YANG J, et al. Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part[J]. Journal of Materials Processing Technology, 2015, 216:223-233
[11] 肖树龙, 陈玉勇, 朱洪艳, 等. 大型复杂薄壁钛合金铸件熔模精密铸造研究现状及发展[J]. 稀有金属材料与工程, 2006, 35(5):4 XIAO Shulong, CHEN Yuyong, ZHU Hongyan, et al. Recent advances on precision casting of large thin wall complex castings of titanium alloys[J]. Rare Metal Materials and Engineering, 2006, 35(5):4(in Chinese)
[12] 洪慎章. 冷挤压实用技术[M]. 北京:机械工业出版社, 2014 HONG Shenzhang. Cold extrusion practical technology[M]. Beijing:China Machine Press, 2014(in Chinese)
[13] 佘斌. 薄壁方锥形件冷挤压变形过程的分析及数值模拟[D]. 北京:北京科技大学, 2005 SHE Bin. Analysis and numerical simulation of cold extrusion forming process on thin-walled and cone-shaped part[D]. Beijing:University of Science and Technology Beijing, 2005(in Chinese)
[14] 许兰贵. 变壁厚大锥度薄壁铝罐成形关键技术的研究[D]. 广州:华南理工大学, 2010 XU Langui. Study on the key technology of thin-walled aluminum can forming with variable thickness and large tapers[D]. Guangzhou:South China University of Technology, 2010(in Chinese)
[15] 任杰. 5A06铝合金底座挤压成形工艺研究[D]. 太原:中北大学, 2013 REN Jie. Study on extrusion forming technology of 5A06 aluminum alloy base[D]. Taiyuan:North University of China, 2013(in Chinese)
[16] 贺晨晨, 李国俊, 张治民, 等. 2A12铝合金带筋薄壁梯形环件挤压成形研究[J]. 热加工工艺, 2018,47(7):121-125 HE Chenchen, LI Guojun, ZHANG Zhimin, et al. Study on extrusion forming of 2A12 aluminum alloy thin-walled trapezoidal ring with ribs[J]. Hot Working Technology, 2018,47(7):121-125(in Chinese)
[17] 骆无思, 张宝红, 李国俊, 等. 5A06铝合金带筋盒体件挤压缺陷的模拟分析及优化[J]. 轻合金加工技术, 2017, 45(3):39-45 LUO Wusi, ZHANG Baohong, LI Guojun, et al. Simulation analysis and optimization of the extrusion defects of the box-shaped workpiece with ribs of 5A06 aluminum alloy[J]. Light Alloy Fabrication Technology, 2017,45(3):39-45(in Chinese)
[18] 秦高科. 铝合金壳体异形件温挤压成形工艺优化[D]. 太原:中北大学,2009 QIN Gaoke. Study on process forming of aluminum alloy products with abnormal shapes[D]. Taiyuan:North University of China, 2009(in Chinese)
[19] 李大永, 罗超, 周飞, 等. 薄壁门窗型材挤压的有限体积分步模拟[J]. 中国有色金属学报, 2004(8):1360-1365 LI Dayong, LUO Chao, ZHOU Fei, et al. Simulation of thin-walled aluminum decoration part extrusion process with multi-stage finite volume method[J]. Trans of Nonferrous Metals Society of China, 2004(8):1360-1365(in Chinese)
[20] FANG G, ZHOU J, JUREK D. Extrusion of 7075 aluminium alloy through double-pocket dies to manufacture a complex profile[J]. Journal of Materials Processing Technology, 2009, 209(6):3050-3059
[21] 胡龙飞, 刘全坤, 王成勇, 等. 基于响应面模型的铝合金壁板挤压成形优化设计[J]. 中国机械工程,2008(13):1630-1633 HU Longfei, LIU Quankun, WANG Chengyong, et al. Optimal design of aluminum alloy flat-plate extrusion process based on the response surface model[J]. China Mechanical Engineering, 2008(13):1630-1633(in Chinese)
[22] 王哲. 钛合金在现代飞机结构上的应用[J]. 钛工业进展,1997(6):24-25 WANG Zhe. Application of cold extruded titanium alloy to modern aircraft structures[J]. Titanium Industry Progress, 1997(6):24-25(in Chinese)
[23] 李成功, 曾凡昌. 俄国等温锻造技术的进展[J]. 航空科学技术, 1996(5):4 LI Chenggong, ZENG Fanchang. Progress of Russian isothermal forging technology[J]. Aeronautical Science and Technology, 1996(5):4(in Chinese)
[24] SOMANI M C, SUNDARESAN R, KAIBYSHEV O A, et al. Deformation processing in superplasticity regime-production of aircraft engine compressor discs out of titanium alloys[J]. Materials Science & Engineering A, 1998, 243(1/2):134-139
[25] GUO X, DONG D, SU S, et al. Hot extrusion precision forming research on 5A06 aluminum alloy pedestal[J]. Aerospace Manufacturing Technology, 2019, 1:27-31
[26] 王琪伟. 5A06铝合金环形连接框精密锻造工艺研究[D]. 哈尔滨:哈尔滨工业大学, 2020 WANG Qiwei. Study on precision forging process of 5A06 aluminum alloy ring joint frame[D]. Harbin:Harbin Institute of Technology, 2020(in Chinese)
[27] ZHAO J, DENG Y, ZHANG J, et al. Effect of forging speed on the formability, microstructure and mechanical properties of isothermal precision forged of Al-Zn-Mg-Cu alloy[J]. Materials Science & Engineering A, 2019, 767(8):138366
[28] 潘跃进, 吴跃江. 2024铝合金件精密等温锻造工艺研究[J]. 锻压技术, 2014, 39(1):4 PAN Yuejin, WU Yuejiang. Study on isothermal forging process of 2024 aluminum alloy precision parts[J]. Forging & Stamping Technology, 2014, 39(1):4(in Chinese)
[29] 李旭斌. 高强铝合金复杂筋板构件整体成形技术研究[D]. 太原:中北大学, 2015 LI Xubin. Study on monolithic forming technology for aldural complex rib-web component[D]. Taiyuan:North University of China, 2015(in Chinese)
[30] 约翰·M·萨尔基相, 约翰·R·帕利奇, 小约瑟夫·J·泽克. 分步骤成段闭模锻压法[P]. CN1142791A, 1997
[31] SARKISIAN J M, PALITSCH J R, ZECCO J J. Stepped, segmented, closed-die forging[P]. US5950481, 1999
[32] KOPP R, SCHMITZ A. Plastic working in Germany and related environmental issues[J]. Journal of Materials Processing Technology, 1996, 59(3):186-198
[33] 杨平, 单德彬, 高双胜, 等. 筋板类锻件等温精密成形技术研究[J]. 锻压技术, 2006(3):55-58 YANG Ping, SHAN Debiao, GAO Shuangsheng, et al. Research on isothermal precision technology of rib-web forging parts[J]. Forging & Stamping Technology, 2006, (3):55-58(in Chinese)
[34] 薛克敏, 郝南海. MB15镁合金上机匣的等温精锻工艺[J]. 中国有色金属学报, 1998, 8(1):7-10 XUE Kemin, HAO Nanhai. Isothermal precision forging of MB15 magnesium alloy upper casing[J]. The Chinese Journal of Nonferrous Metals, 1998,8(1):7-10(in Chinese)
[35] YANG H, LI H W, FAN X G, et al. Technologies for advanced forming of large-scale complex-structure titanium components[C]//Proceedings of the 10th International Conference on Technology of Plasticity, 2011
[36] ZHANG D W, YANG H, SUN Z C. Analysis of local loading forming for titanium-alloy T-shaped components using slab method[J]. Journal of Materials Processing Technology, 2010, 210(2):258-266
[37] 吴跃江, 杨合, 孙志超, 等. 局部加载条件对筋板类构件成形材料流动影响的模拟研究[J]. 中国机械工程, 2006(增刊1):12-15 WU Yuejiang, YANG He, SUN Zhichao, et al. Simulation on influence of local loading conditions on material flow during rib-web components forming[J]. China Mechanical Engineering, 2006(suppl 1):12-15(in Chinese)
[38] 李志燕. TA15钛合金等温局部加载过渡区宏微观变形研究[D]. 西安:西北工业大学,2008 LI Zhiyan. Research on marco-microcosmic deforming in isothermal local loading transition region for large-scale complex integral components of TA15 titanium alloy[D]. Xi'an:Northwestern Polytechnical University, 2008(in Chinese)
[39] 孙志超, 杨合, 李志燕. TA15合金H型构件等温局部加载成形工艺研究[J]. 稀有金属材料与工程, 2009, 38(11):1904-1909 SUN Zhichao, YANG He, LI Zhiyan. H-shaped component isothermal local loading forming of TA15 titanium alloy[J]. Rare Metal Materials and Engineering, 2009, 38(11):1904-1909(in Chinese)
[40] SUN Z C, YANG H. Analysis on process and forming defects of large-scale complex integral component isothermal local loading[J]. Matericols Scipence Forcum, 2009, 614:117-122
[41] 孙念光. 钛合金筋板类构件等温局部加载成形规律及缺陷研究[D]. 西安:西北工业大学,2008 SUN Nianguang. Research on forming rules and defects of titanium alloy ribbed plate components under isothermal local loading[D]. Xi'an:Northwestern Polytechnical University, 2008(in Chinese)
[42] 张大伟, 杨合, 孙志超, 等. 大型复杂筋板类构件局部加载等温成形宏微观模型[C]//第三届全国精密锻造学术研讨会论文集, 2008:104-111 ZHANG Dawei, YANG He, SUN Zhichao, et al. Macro and micro model of local loading isothermal forming of large complex stiffened plate components[C]//Proceedings of the third National Symposium on Precision Forging of China, 2008(in Chinese)
[43] 孙志超, 杨合, 孙念光. 钛合金整体隔框等温成形局部加载分区研究[J]. 塑性工程学报, 2009, 16(1):138-143 SUN Zhichao, YANG He, SUN Nianguang. Simulation on local loading partition during titanium bulkhead isothermal forming process[J]. Journal of Plasticity Engineering, 2009, 16(1):138-143(in Chinese)
[44] 孙念光, 杨合, 孙志超. 大型钛合金隔框等温闭式模锻成形工艺优化[J]. 稀有金属与工程, 2009, 38(7):1296-1300 SUN Nianguang, YANG He, SUN Zhichao. Optimization on the process of large titanium bulkhead isothermal closed-die forging[J]. Rare Metal Materials and Engineering, 2009, 38(7):1296-1300(in Chinese)
[45] 彭飞飞, 杨合, 孙志超, 等. 钛合金大型复杂件预制坯成形工艺模拟研究[J]. 塑性工程学报, 2008, 15(5):47-52 PENG Feifei, YANG He, SUN Zhichao, et al. Simulation on billet preforming process of large-scale complex part of titanium alloy[J]. Journal of Plasticity Engineering, 2008, 15(5):47-52(in Chinese)
[46] ZHOU W J, SUN Z C, ZUO S P, et al. Shape optimization of initial billet for TA15 ti-alloy complex components preforming[J]. Rare Metal Materials and Engineering, 2011, 40(6):951-956
[47] SUN Z C, YANG H. Microstructure and mechanical properties of TA15 titanium alloy under multi-step local loading forming[J]. Materials Science & Engineering A, 2009, 523(1/2):184-192
[48] FAN X G, YANG H, SUN Z C, et al. Effect of deformation inhomogeneity on the microstructure and mechanical properties of large-scale rib-web component of titanium alloy under local loading forming[J]. Materials Science & Engineering A, 2010, 527(21/22):5391-5399
[49] FAN X G, GAO P F, YANG H. Microstructure evolution of the transitional region in isothermal local loading of TA15 titanium alloy[J]. Materials Science & Engineering A, 2011, 528(6):2694-2703
[50] GAO P F, YANG H, FAN X G. Quantitative analysis of the microstructure of transitional region under multi-heat isothermal local loading forming of TA15 titanium alloy[J]. Materials & Design, 2011, 32(4):2012-2020
[51] KOPP R, BOHLKE P. A new rolling process for strips with a defined cross section[J]. CIPR Annals-Manufacturing Technology, 2003, 52(1):197-200
[52] RYABKOV N, JACKEL F, PUTTEN K V, et al. Production of blanks with thickness transitions in longitudinal and lateral direction through 3D-strip profile rolling[J]. International Journal of Material Forming, 2008, 1(suppl 1):391-394
[53] 姜正义, 刘相华. 纵凸筋钢板连轧试验研究[J]. 材料科学与工艺, 1993, 1(1):5 JIANG Zhengyi, LIU Xianghua. Experimental study on continuous rolling of strip steel with longitudinal ribs[J]. Materials Science and Technology, 1993, 1(1):5(in Chinese)
[54] 毛华杰, 赵耀宁, 兰箭. 带纵筋平板的轧制成形规律与极限研究[J]. 锻压技术, 2020, 45(8):49-55 MAO Huajie, ZHAO Yaoning, LAN Jian. Research on rolling law and limit for plate with longitudinal rib[J]. Forging & Stamping Technology, 2020, 45(8):49-55(in Chinese)
[55] 温彤, 张梦, 胡金, 等. 基于辊压的整体壁板筋肋压型与弯曲一体化成形方法[P]. CN107186063A, 2017
[56] 胡金, 温彤, 张梦, 等. 基于响应面法的筋肋板辊轧成形工艺参数优化[J]. 锻压技术, 2019, 44(8):35-40 HU Jin, WEN Tong, ZHANG Meng, et al. Optimization on rolling process parameters for rib stiffened plates based on respond surface method[J]. Forging & Stamping Technology, 2019, 44(8):35-40(in Chinese)
[57] 王丹晨, 张承基, 边翊, 等. 锻造方法对铝合金车轮轮辐组织的影响[J]. 锻压技术, 2018, 43(5):1-5 WANG Danchen, ZHANG Chengji, BIAN Yi, et al. Influence of forging method on microstructure of spoke for aluminum alloy wheel[J]. Forging & Stamping Technology, 2018, 43(5):1-5(in Chinese)
[58] HAN X H, HUA L, ZHUANG W, et al. Process design and control in cold rotary forging of non-rotary gear parts[J]. Journal of Materials Processing Technology, 2014, 214(11):2402-2416
[59] 冯驰骋. 薄壁网格筋构件摆辗成形工艺与机理研究[D]. 武汉:武汉理工大学,2019 FENG Chicheng. Research on technology and mechanism of rotary forging for components with cross ribs and thin webs[D]. Wuhan:Wuhan University of Technology, 2019(in Chinese)
[60] TIAN D, HAN X, HUA L, et al. A novel process for axial closed extrusion of ring part with mesh-like ribs[J]. International Journal of Mechanical Sciences, 2020, 165:105186
[61] QIAN D S, LI G, DENG J, et al. Effect of die structure on extrusion forming of thin-walled component with I-type longitudinal ribs[J]. International Journal of Advanced Manufacturing Technology, 2020, 108:1959-1971
[62] 曹安斋. 铝合金内腔带筋筒形挤压件成形工艺分析与实验研究[D]. 太原:中北大学,2008 CAO Anzhai. The technology analysis and experimental research on round extrusion part with intra-cavity rib forming of aluminum alloy[D]. Taiyuan:North University of China, 2008(in Chinese)
[63] 雷煜东, 王强, 张治民, 等. 旋转挤压裂纹萌生趋势的数值模拟[J]. 塑性工程学报,2018,25(2):122-127 LEI Yudong. WANG Qiang, ZHANG Zhimin, et al. Numerical simulation of crack initiation trends during rotating extrusion[J]. Journal of Plasticity Engineering, 2018,25(2):122-127(in Chinese)
[64] WANG Z G, DONG W Z, YATO H. A new forming method of flange on a drawn cup by plate forging[J]. Procedia Manufacturing, 2018, 15:955-960
[65] ALVES L M, GAMEIRO J, SILVA C, et al. Sheet-bulk forming of tubes for joining applications[J]. Journal of Materials Processing Technology, 2017(240):154-161
[66] ALVES L M, AFONSO R M, SILVA C, et al. Boss forming of annular flanges in thin-walled tubes[J]. Journal of Materials Processing Technology, 2017(250):182-189
[67] 李倩云, 胡勇, 王辰, 等. 高强铝合金薄壁高筋大型壁板精确成形制造技术研究[J]. 宇航总体技术,2021, 5(1):19-26 LI Qianyun, HU Yong, WANG Chen, et al. Research of precise manufacturing technology for large thin wall panel with high ribs made of high strength aluminum alloy[J]. Astronautical Systems Engineering Technology, 2021,5(1):19-26(in Chinese)
[68] QIAN D S, LI G, DENG J, et al. Effect of die structure on extrusion forming of thin-walled component with I-type longitudinal ribs[J]. International Journal of Advanced Manufacturing Technology, 2020, 108(9/10/11/12):1-13
[69] 李继贞.《中国制造2025》与旋压技术[C]//第十四届全国旋压技术交流年会, 惠州, 2016 LI Jizhen. "Made in China 2025" & Spinning technology[C]//Proceedings of the 14th National Spinning Technology Exchange Annual Conference of China, Huizhou, 2016(in Chinese)
[70] 杜坤, 杨合. 多道次普旋技术研究进展[J]. 机械科学与技术, 2001(4):558-560 DU Kun, YANG He. Research progress of multipass universal spin technology[J]. Mechanical Science and Technology, 2001(4):558-560(in Chinese)
[71] 毛华杰, 刘亚鹏, 邓加东. 带纵向外筋薄壁筒形件复合流动成形数值模拟与工艺优化[J]. 锻压技术, 2020, 45(4):93-99 MAO Huajie, LIU Yapeng, DENG Jiadong. Numerical simulation and process optimization of composite flow forming for thin-walled cylinder with longitudinal external ribs[J]. Forging & Stamping Technology, 2020, 45(4):93-99(in Chinese)
[72] XU W, ZHAO X, SHAN D, et al. Numerical simulation and experimental study on multi-pass stagger spinning of internally toothed gear using plate blank[J]. Journal of Materials Processing Technology, 2016, 229:450-466
[73] MA F, YANG H, ZHAN M. Research on distribution of stress and strain field in power spinning process of parts with transverse rib[C]//The Fifth International Conference on Physical & Numerical Simulation of Materials Processing, 2007
[74] MA F, YANG H, ZHAN M. Research on the metal flow in power spinning process of parts with transverse inner rib[C]//The 8th International Conference on Frontiers of Design and Manufacturing, Tianjin, 2008
[75] ZENG X, FAN X G, LI H W, et al. Die filling mechanism in flow forming of thin-walled tubular parts with cross inner ribs[J]. Journal of Manufacturing Processes, 2020, 58:832-844
[76] LYU W, ZHAN M, GAO P F, et al. Improvement of rib-grid structure of thin-walled tube with helical grid-stiffened ribs based on the multi-mode filling behaviors in flow forming[J]. Journal of Materials Processing Technology, 2021, 296:117167
[77] 朱宝行. 带网格内筋薄壁筒形件流动旋压工艺研究[D]. 上海:上海交通大学, 2019 ZHU Baoxing. Study on flow forming process of thin-walled cylindrical parts with grid inner ribs[D]. Shanghai:Shanghai Jiaotong University, 2019(in Chinese)
[78] 樊晓光, 姚毅, 詹梅. 一种环形外筋筒形件剪切成形方法[P]. CN202111514518.3, 2021
[79] HAN X H, HUA L, PENG L, et al. An innovative radial envelope forming method for manufacturing thin-walled cylindrical ring with inner web ribs[J]. Journal of Materials Processing Technology, 2020, 286:116836
[80] 彭露. 薄壁高筋筒形构件包络辗压成形方法研究[D]. 武汉:武汉理工大学,2020 PENG Lu. Research on envelope forming method for thin-walled cylindrical components with high rib[D]. Wuhan:Wuhan University of Technology, 2020(in Chinese)