论文:2021,Vol:39,Issue(6):1312-1319
引用本文:
黄晓宇, 王攀, 李海和, 张政. 具有模糊失效状态的涡轮盘疲劳可靠性及灵敏度分析[J]. 西北工业大学学报
HUANG Xiaoyu, WANG Pan, LI Haihe, ZHANG Zheng. Fatigue reliability and sensitivity analysis of turbine disk with fuzzy failure status[J]. Northwestern polytechnical university

具有模糊失效状态的涡轮盘疲劳可靠性及灵敏度分析
黄晓宇1,2, 王攀1,2, 李海和1,2, 张政1,2
1. 西北工业大学 力学与土木建筑学院, 陕西 西安 710072;
2. 西北工业大学 飞行器可靠性研究所, 陕西 西安 710072
摘要:
低循环疲劳是航空发动机涡轮盘的典型失效模式,传统的基于二元状态假设的可靠性分析没有考虑载荷加载顺序以及小载荷强化损伤等因素导致的损伤极限变化,因此有一定的局限性。在涡轮盘疲劳可靠性分析基础上再考虑失效状态的模糊性,选定隶属函数来表示涡轮盘的模糊失效概率,再利用高斯公式将模糊失效概率转为一系列常规失效概率。建立一个自适应学习的Kriging模型来计算不同失效面对应的失效概率,继而求解涡轮盘的模糊失效概率。建立基于模糊失效概率的全局灵敏度指标,分析输入变量对模糊失效概率的影响,分析结果有助于涡轮盘的可靠性设计与优化。
关键词:    涡轮盘    低循环疲劳寿命    模糊可靠性    自适应学习Kriging    灵敏度分析   
Fatigue reliability and sensitivity analysis of turbine disk with fuzzy failure status
HUANG Xiaoyu1,2, WANG Pan1,2, LI Haihe1,2, ZHANG Zheng1,2
1. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China;
2. Aircraft Reliability Institute, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Low-cycle fatigue is typical failure mode of aero-engine turbine disk, traditional reliability analysis method based on the binary state assumption has certain limitations for turbine disk reliability evaluation,because it doesn't consider the change of damage strength parameter caused by loading sequences and the enhanced damage by small load. On the basis of fatigue reliability analysis of the turbine disk, this paper considers the fuzzy state assumption of turbine disk, then select the membership function and indicate fuzzy failure probability of turbine disk, which can be transformed into a series of conventional failure probability by Gaussian quadrature. An active learning Kriging model is used to orderly calculate the failure probability corresponding to different limit state functions and the fuzzy failure probability of turbine disk. A global sensitivity index based on fuzzy failure probability is established to analyze the influence of input variables on the fuzzy failure probability, which is helpful to the reliability design and structural optimization of the turbine disk.
Key words:    turbine disk    low cycle fatigue life    fuzzy reliability    active learning Kriging    sensitive analysis   
收稿日期: 2021-01-23     修回日期:
DOI: 10.1051/jnwpu/20213961312
基金项目: 国家自然科学基金面上项目(51975473)资助
通讯作者: 王攀(1988-),西北工业大学副教授、博士生导师,主要从事可靠性、结构优化研究。e-mail:panwang@nwpu.edu.cn     Email:panwang@nwpu.edu.cn
作者简介: 黄晓宇(1996-),西北工业大学硕士研究生,主要从事结构可靠性研究。
相关功能
PDF(1613KB) Free
打印本文
把本文推荐给朋友
作者相关文章
黄晓宇  在本刊中的所有文章
王攀  在本刊中的所有文章
李海和  在本刊中的所有文章
张政  在本刊中的所有文章

参考文献:
[1] CAI K Y, WEN C Y, ZHANG M L. Fuzzy states as a basis for a theory of fuzzy reliability[J]. Microelectronics Reliability, 1993, 33(15):2253-2263
[2] MIRAKBARI M, GANJI A. Reliability analysis of a rangeland system:the application of profust theory[J]. Stochastic Environmental Research and Risk Assessment, 2010, 24(3):399-409
[3] 黄洪钟. 基于模糊失效准则的机械结构广义静强度的模糊可靠性计算理论[J]. 机械强度, 2000, 22(1):36-40 HUANG Hongzhong. Fuzzy reliability analysis of generalized static strength of mechanical structure based on fuzzy criterion[J]. Journal of Mechanical Strength, 2000, 22(1):36-40(in Chinese)
[4] 董玉革, 朱文予, 陈心昭. 机械模糊可靠性计算方法的研究[J]. 系统工程学报, 2000, 15(1):7-12 DONG Yuge, ZHU Wenyu, CHEN Xinzhao. Study on a calculate method of machine fuzzy reliability[J]. Journal of Systems Engineering, 2000, 15(1):7-12(in Chinese)
[5] 李贵杰, 吕震宙. 考虑状态模糊性时广义失效概率计算的鞍点逼近方法[J]. 力学季刊, 2010, 31(1):76-82 LI Guijie, LYU Zhenzhou. Saddlepoint approximation for general failure probability with fuzzy failure and fuzzy safety state[J]. Chinese Quarterly of Mechanics, 2010, 31(1):76-82(in Chinese)
[6] 宋军, 吕震宙. 考虑状态模糊性时广义失效概率计算的矩方法[J]. 工程力学, 2008(2):71-77 SONG Jun, LYU Zhenzhou. Moment method for general failure probability with fuzzy failure state and fuzzy safety state[J]. Engineering Mechanics, 2008(2):71-77(in Chinese)
[7] FENG K X, LU Z Z, PANG C, et al. Efficient numerical algorithm of profust reliability analysis:an application to wing box structure[J]. Aerospace Science and Technology, 2018, 80:203-211
[8] YUN W Y, LU Z Z, FENG K X, et al. A novel step-wise AK-MCS method for efficient estimation of fuzzy failure probability under probability inputs and fuzzy state assumption[J]. Engineering Structures, 2019, 183:340-350
[9] ZHANG X B, LU Z Z, FENG K X, et al. Reliability sensitivity based on profust model:an application to aircraft icing analysis[J]. AIAA Journal, 2019, 57(12):5390-5402
[10] ZHU S P, LIU Q, ZHOU J, et al. Fatigue reliability assessment of turbine discs under multisource uncertainties[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(6):1291-1305
[11] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225 HAN Zhonghua. Kriging surrogate model and its application to design optimization:a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese)
[12] 李坚. 代理模型近似技术研究及其在结构可靠度分析中的应用[D]. 上海:上海交通大学, 2013 LI Jian. Study of surrogate model approximation and surrogate-enhanced structural reliability analysis[D]. Shanghai:Shanghai Jiaotong University, 2013(in Chinese)
[13] 赵威. 结构可靠度分析代理模型方法研究[D]. 哈尔滨:哈尔滨工业大学, 2012 ZHAO Wei. Study on surrogate model methods for structural reliability analysis[D]. Harbin:Harbin Institute of Technology, 2012(in Chinese)
[14] 朱顺鹏, 黄洪钟, 谢里阳. 考虑小载荷强化的模糊疲劳寿命预测理论[J]. 航空学报, 2009, 30(6):1048-1052 ZHU Shunpeng, HUANG Hongzhong, XIE Liyang. Prediction of fuzzy fatigue life under low amplitude loading strengthening[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):1048-1052(in Chinese)
[15] BBRGONOVO E. A new uncertainty importance measure[J]. Reliability Engineering and System Safety, 2007, 92(6):771-784
[16] SACK J, SCHILLER S B, WELCH W J. Design for computer experiment[J]. Technometrics, 1989, 31(1):41-47
[17] BICHON B J, ELDRED M S, SWILER L P, et al. Efficient global reliability analysis for nonlinear implicit performance functions[J]. AIAA Journal, 2008, 46(10):2459-2468
[18] ZHOU S T, LU Z Z, LING C Y, et al. Global reliability sensitivity analysis index and its efficient numerical simulation solution in presence of both random and interval hybrid uncertainty[J]. Structural and Multidisciplinary Optimization, 2021, 63(4):551-573
[19] LYU Z Y, LU Z Z, WANG P. A new learning function for Kriging and its applications to solve reliability problems in engineering[J]. Computers and Mathematics with Applications, 2015, 70(5):1182-1197
[20] ECHARD B, GAYTON N, LEMAIRE M. AK-MCS:an active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety, 2011, 33(2):145-154
[21] LING C Y, LU Z Z, SUN B, et al. An efficient method combining active learning Kriging and Monte Carlo simulation for profust failure probability[J]. Fuzzy Sets and Systems, 2020, 387:89-107