论文:2021,Vol:39,Issue(6):1296-1303
引用本文:
孟元沛, 郭志平, 王传婷, 何勇, 何源, 胡雪冰. ZrCuAlNiNb非晶合金的Taylor撞击断裂行为研究[J]. 西北工业大学学报
MENG Yuanpei, GUO Zhiping, WANG Chuanting, HE Yong, HE Yuan, HU Xuebing. Research on Taylor impact fracture behavior of ZrCuAlNiNb amorphous alloy[J]. Northwestern polytechnical university

ZrCuAlNiNb非晶合金的Taylor撞击断裂行为研究
孟元沛1, 郭志平1,2, 王传婷1, 何勇1, 何源1, 胡雪冰1
1. 南京理工大学 机械工程学院, 江苏 南京 210094;
2. 西南技术工程研究所, 重庆 401331
摘要:
在氩气条件下,对ZrCuAlNiNb非晶及其晶体合金进行了撞击速度范围为78.9~155 m/s的Taylor撞击试验研究,利用高分辨率高速摄影对材料的失效断裂过程进行记录,并对失效断裂后的试件进行回收;利用扫描电镜对其断面微观形貌进行观察,分析材料在不同速度撞击下的失效断裂行为。ZrCuAlNiNb非晶合金由低速撞击下的单条主剪切带断裂到高速(≥150 m/s)撞击下的多条剪切带断裂的转变,而且多条沿着试件轴向方向次生剪切带形成;其复杂的受力导致多种断裂形貌,动态温升加剧了材料热软化效应。ZrCuAlNiNb晶体合金撞击靶板产生的裂纹主要沿着轴向扩展,在多条裂纹的相互作用下导致晶体合金失效破碎,断裂形貌呈现河流状的解理断裂形貌。对ZrCuAlNiNb非晶合金的力学性能及其失效行为研究可为推动Zr基非晶合金的工程应用提供理论指导与试验依据。
关键词:    冲击动力学    ZrCuAlNiNb非晶合金    Taylor撞击    断口形貌   
Research on Taylor impact fracture behavior of ZrCuAlNiNb amorphous alloy
MENG Yuanpei1, GUO Zhiping1,2, WANG Chuanting1, HE Yong1, HE Yuan1, HU Xuebing1
1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2. Southwest Research Institute of Technology and Engineering, Chongqing 401331, China
Abstract:
Under argon conditions, the Taylor impact test for ZrCuAlNiNb amorphous alloy with impact velocity range of 78.9-155 m/s was carried out, the failure fracture process of the material was recorded by high-resolution high-speed photography, and the fractured samples after fracture were recovered. The microscopic morphology of the section was observed by scanning electroscope, and the fracture behavior of the material at different impact speeds was analyzed. ZrCuAlNiNb amorphous alloy breaks from a single main shear band under low-speed impact to a multi-shear band break at high speed (≥ 150 m/s), and several secondary shear straps are formed along the axial direction of the sample. Its complex force leads to a variety of fractured forms, and dynamic temperature rise aggravates the thermal softening effect of the material. ZrCuAlNi crystal alloy is transmitted by axial cracks, which cause the crystal alloy to fracture under the interaction of multiple cracks, and the fractured morphology presents a river-like cleavage fracture. The study of the mechanical properties of ZrCuAlNiNb amorphous alloys and their failure behavior provide theoretical guidance and experimental basis for the application of ZrCuAlNiNb amorphous alloys.
Key words:    impact dynamics    ZrCuAlNiNb amorphous alloy    Taylor impact    fracture morphology   
收稿日期: 2021-01-25     修回日期:
DOI: 10.1051/jnwpu/20213961296
基金项目: 国家自然科学基金(51601095,51601162,11702145)资助
通讯作者: 王传婷(1986-),南京理工大学副教授,主要从事弹药战斗部新材料技术研究。e-mail:ctwang@njust.edu.cn     Email:ctwang@njust.edu.cn
作者简介: 孟元沛(1997-),南京理工大学博士研究生,主要从事弹药战斗部新材料技术研究。
相关功能
PDF(3661KB) Free
打印本文
把本文推荐给朋友
作者相关文章
孟元沛  在本刊中的所有文章
郭志平  在本刊中的所有文章
王传婷  在本刊中的所有文章
何勇  在本刊中的所有文章
何源  在本刊中的所有文章
胡雪冰  在本刊中的所有文章

参考文献:
[1] 沈军, 王刚, 孙剑飞, 等. Zr基块体非晶合金在过冷液相区的超塑性流变行为[J]. 金属学报, 2004(5):518-522 SHEN Jun, WANG Gang, SUN Jianfei, et al. Superplastic flow behavior of Zr base bulk metallic glass in supercooled liquid region[J]. Acta Metallurgica Sinica, 2004(5):518-522(in Chinese)
[2] 张猛. 块体非晶合金过冷液体流变动力学行为研究[D]. 武汉:华中科技大学, 2013 ZHANG Meng. A dissertation submitted in partial fulfillment of the requirements for the degree of philosophy in engineering[D]. Wuhan:Huazhong University of Science and Technology, 2013(in Chinese)
[3] WANG C T, HE Y, JI C, et al. Dynamic fragmentation of a Zr-based metallic glass under various impact velocities[J]. Journal of Materials Science, 202156:2900-2911
[4] GUO Z, LIU R, WANG C T, et al. Compressive mechanical properties and shock induced reaction behavior of a Ti-29Nb-13Ta-4.6Zr Alloy[J]. Metals and Materials International, 2020, 26:1498-1505
[5] JI C, HE Y, WANG C T, et al. Effect of dynamic fragmentation on the reaction characteristics of a Zr-based metallic glass[J]. Journal of Non-Crystalline Solids, 2019, 515:149-156
[6] 张云峰, 罗兴柏, 施冬梅, 等. 动态压缩下Zr基非晶合金失效释能机理[J]. 爆炸与冲击, 2019, 39(6):35-42 ZHANG Yunfeng, LUO Xingbai, SHI Dongmei, et al. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression[J]. Explosion And Shock Waves, 2019, 39(6):35-42(in Chinese)
[7] HAN W, HE Y, WANG C, et al. Effect of Nb additive on the dynamic compression property of a Zr-Ta alloy[J]. Tehniĉki Vjesnik, 2019, 26(2):457-461
[8] HAN W, HE Y, WANG C, et al. Experimental study on the damage ability of reactive fragments fabricated by Zr-based metallic glass(an environment perspective)[J]. KOLOJI, 2019, 107:4885-4890
[9] WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass[J]. Intermetallics, 2018, 93:383-388
[10] ZHENG W, HUANG Y, WANG G, et al. Influence of strain rate on compressive deformation behavior of a Zr-Cu-Ni-Al bulk metallic glass at room temperature[J]. Metallurgical & Materials Transactions, Part A, 2011, 528(22/23):6855-6859
[11] LIU Y H, WANG G, WANG R J, et al. Super plastic bulk metallic glasses at room temperature[J]. Science, 2007, 315(5817):1385-1388
[12] XIAO X, FANG S, XIA L, et al. Effect of strain rates on the fracture morphologies of Zr-based bulk metallic glasses[J]. Journal of Non-Crystalline Solids, 2003, 330:242-247
[13] 房连祥, 李然, 张涛. CuZr基块体非晶合金室温拉伸力学性能研究[J]. 功能材料, 2015, 46(24):30-32 FANG Lianxiang, LI Ran, ZHANG Tao. Tensile mechanical properties of CuZr-based bulk metallic glass at room temperature[J]. Journal of Functional Materials, 2015, 46(24):30-32(in Chinese)
[14] LIU W D, LIU K X, XIA X X, et al. The failure stress of bulk metallic glasses under very high strain rate[J]. Journal of Materials Research, 2010, 25(7):1230-1234
[15] XUE Y F, CAI H N, WANG L, et al. Effect of loading rate on failure in Zr-based bulk metallic glass[J]. Materials Science & Engineering A, 2008, 473(1/2):105-110
[16] CLINE C, REAUGH J. Dynamic yield strength of a palladium alloy metallic glass[J]. Journal De Physics Ⅳ, 1991, 1:139-146
[17] CLINE C, REAUGH J. Dynamic yield strength of a zirconium base metallic glass[J]. Journal De Physics Ⅳ, 1997, 7:493-496
[18] WILLMOTT G R, RADFORD D D. Taylor impact of glass rods[J]. Journal of Applied Physics, 2005, 97(9):93522-93528
[19] 徐振, 熊迅, 李天密, 等. 冲击压缩下石英玻璃柱的破坏实验研究和数值模拟[J]. 宁波大学学报, 2018, 31(2):37-43 XU Zheng, XIONG Xun, LI Tianmi, et al. Experimental and umerical investigations on failure of quartz glass rod under impact compression[J]. Journal of Ningbo University, 2018, 31(2):37-43(in Chinese)
[20] 熊迅, 王珠, 郑宇轩, 等. 石英玻璃杆Taylor撞击实验的数值模拟[J]. 力学学报, 2019(4):1082-1090 XIONG Xun, WANG Zhu, ZHENG Yuxuan, et al. Numerical simulations of Taylor impact experiments of quartz glass bars[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019(4):1082-1090(in Chinese)
[21] GUO Z P, WANG C T, HE Y, et al. Effect of strain rate on compressive behavior of a ZrCuNiAl bulk metallic glass at room temperature[C]//Materials Science Forum, 2021
[22] ZHANG Z F, ECKERT J, SCHULTZ L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass[J]. Acta Materialia, 2003, 51(4):1167-1179
[23] 何福龙. ZrCuNiAl块体非晶的Taylor撞击行为及侵彻性能[D]. 哈尔滨:哈尔滨工业大学,2013 HE Fulong. ZrCuNiAl block amorphous Taylor impact behavior and intrusion performance[D]. Harbin:Harbin University of Technology, 2013(in Chinese)
[24] 刘俊,王鲁,程焕武, 等. 高速冲击载荷下块体Zr基非晶合金断裂行为研究[J]. 北京理工大学学报,2012, 32(2):198-201 LIU Jun, WANG Lu, CHENG Huanwu, et al. Study on the fracture behavior of Zr-based amorphoous alloys under high-speed impact load[J]. Journal of Beijing Polytechnic University, 2012, 32(2):198-201(in Chinese)
[25] 陈汝淑,刘德义,刘世程, 等. 高氮奥氏体钢低温断面的晶体学分析[J]. 金属学报,2007(12):1233-1238 CHEN Rushu, LIU Deyi, LIU Shicheng, et al. Crystallological analysis of low temperature sections of high nitrogen austate steels[J]. Journal of Metals, 2007(12):1233-1238(in Chinese)