论文:2021,Vol:39,Issue(6):1233-1239
引用本文:
董伟, 李扬, 辛克浩, 殷德政, 宋龙龙, 高彤. 基于拓扑优化的点阵-加筋板式结构设计方法[J]. 西北工业大学学报
DONG Wei, LI Yang, XIN Kehao, YIN Dezheng, SONG Longlong, GAO Tong. A method of designing plate structure consisting of lattices and stiffeners based on topology optimization[J]. Northwestern polytechnical university

基于拓扑优化的点阵-加筋板式结构设计方法
董伟1, 李扬2, 辛克浩1, 殷德政1, 宋龙龙2, 高彤2
1. 北京航天长征飞行器研究所, 北京 100076;
2. 西北工业大学 航宇材料结构一体化设计与增材制造装备技术国际联合研究中心, 陕西 西安 710072
摘要:
针对高超声速飞行器仪器舱设备安装板结构轻量化和提高静/动力学性能的设计需求,融合轻质点阵结构与传统加筋结构的优点,提出一种点阵-加筋板式结构方案并建立了拓扑优化设计方法。利用均匀化等效方法计算点阵结构的宏观等效力学性能,将其作为一种虚拟材料,建立实体材料-虚拟材料插值模型。以结构整体质量为约束,整体柔顺度最小为目标建立拓扑优化问题,实现点阵-加筋板式结构布局优化设计。以飞行器设备安装板为例,分别完成了传统加筋结构和点阵-加筋板式结构优化设计。力学性能分析表明,在相同质量条件下,点阵-加筋板式结构方案具有更好的力学性能,大过载下的最大变形降低11.17%,简谐激励下位移响应峰值降低73.81%。
关键词:    拓扑优化    点阵结构    加筋结构   
A method of designing plate structure consisting of lattices and stiffeners based on topology optimization
DONG Wei1, LI Yang2, XIN Kehao1, YIN Dezheng1, SONG Longlong2, GAO Tong2
1. Beijing Institute of Long March Space Vehicle, Beijing 100076, China;
2. International Joint Research Center of Aerospace Design and Additive Manufacturing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In order to satisfy the lightweight design requirements of the equipment mounting plate in the hypersonic vehicle instrument cabin and improve its static/dynamic performance, a novel structure consisting of both lattices and stiffeners are studied and topology optimization method is proposed in this paper. This structure combines the advantages of lattice structures and conventional stiffened structures. First, the lattice structure is regarded as a kind of virtual material, and its equivalent mechanical properties are calculated by the homogenization method. Then, a marerial interpolation model of the virtual and solid materials are established. A topology optimization problem to minimize the mean compliance under the mass constraint is proposed to realize the layout optimization design of stiffened structure with lattices. Taking an equipment mounting plate as an example, the optimization design of the traditional stiffened structure and the novel stiffened structure with lattices is completed, respectively. Numerical analysis indicates that the lattice stiffened plate structure provides advantageous mechanical performation in the condition of the same weight. The maximum deformation under inertial force is reduced by 11.17% and the peak displacement response under harmonic excitation is reduced by 73.81% by using the stiffened structure with lattices.
Key words:    topology optimization    lattice structure    stiffened structure   
收稿日期: 2021-03-11     修回日期:
DOI: 10.1051/jnwpu/20213961233
基金项目: 国家自然科学基金(51735005,51790171)资助
通讯作者:     Email:
作者简介: 董伟(1991-),北京航天长征飞行器研究所工程师,主要从事飞行器结构设计和优化研究。e-mail:dongw14@163.com
相关功能
PDF(3030KB) Free
打印本文
把本文推荐给朋友
作者相关文章
董伟  在本刊中的所有文章
李扬  在本刊中的所有文章
辛克浩  在本刊中的所有文章
殷德政  在本刊中的所有文章
宋龙龙  在本刊中的所有文章
高彤  在本刊中的所有文章

参考文献:
[1] SIGMUND O. Design of material structures using topology optimization[D]. Denmark:Technical University of Denmark, 1994
[2] 周丞, 林杰, 刘勇. 基于拓扑优化和形状优化的桨叶结构设计[J]. 航空工程进展, 2020, 11(1):109-115 ZHOU Cheng, LIN Jie, LIU Yong. Blade structure design based on topology optimization and shape optimization[J]. Advances in Aeronautical Science and Engineering, 2020, 11(1):109-115(in Chinese)
[3] 单悌磊, 白照广, 陈寅昕, 等. 捕风一号卫星构型与结构优化设计[J]. 西北工业大学学报, 2020, 38(增刊1):140-145 SHAN Tilei, BAI Zhaoguang, CHEN Yinxin, et al. Optimal design of configuration and structure for BF-1 satellite[J]. Journal of Northwestern Polytechnical University, 2020, 38(suppl 1):140-145(in Chinese)
[4] LIU L, YAN J, CHENG G. Optimum structure with homogeneous optimum truss-like material[J]. Computers & Structures, 2008, 86(13/14):1417-1425
[5] XIA L, BREITKOPF P. Recent advances on topology optimization of multiscale nonlinear structures[J]. Archives of Computational Methods in Engineering, 2016, 24(2):227-249
[6] YAN J, GUO X, CHENG G D. Multi-scale concurrent material and structural design under mechanical and thermal loads[J]. Computational Mechanics, 2016, 57(3):437-446
[7] ZHANG H, WANG Y, KANG Z. Topology optimization for concurrent design of layer-wise graded lattice materials and structures[J]. International Journal of Engineering Science, 2019, 138:26-49
[8] FU J, XIA L, GAO L, et al. Topology optimization of periodic structures with substructuring[J]. Journal of Mechanical Design, 2019, 141(7):071403
[9] WU Z, XIA L, WANG S, et al. Topology optimization of hierarchical lattice structures with substructuring[J]. Computer Methods in Applied Mechanics and Engineering, 2019(345):602-617
[10] WANG C, ZHU J, WU M, et al. Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components[J]. Chinese Journal of Aeronautics, 2021, 34(5):386-398
[11] THOMSEN J. Topology optimization of structures composed of one or two materials[J]. Structural Optimization, 1992, 5(1/2):108-115
[12] SIGMUND O, TORQUATO S. Design of materials with extreme thermal expansion using a three-phase topology optimization method[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(6):1037-1067
[13] STEGMANN J, LUND E. Discrete material optimization of general composite shell structures[J]. International Journal for Numerical Methods in Engineering, 2005, 62(14):2009-2027
[14] 高彤, 张卫红, DUYSINX Pierre. 多相材料结构拓扑优化:体积约束还是质量约束?[J]. 力学学报, 2011, 43(2):296-305 GAO Tong, ZHANG Weihong, DUYSINX Pierre. Topology optimization of structures designed with multiphase materials:volume constraint or mass constraint?[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2):296-305(in Chinese)
[15] WANG Y, LUO Z, KANG Z, et al. A multi-material level set-based topology and shape optimization method[J]. Computer Methods in Applied Mechanics and Engineering, 2015(283):1570-1586
[16] ARABNEJAD S, PASINI D. Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods[J]. International Journal of Mechanical Sciences, 2013, 77:249-262