论文:2021,Vol:39,Issue(5):1087-1096
引用本文:
邓景辉. 舰艉流时/频特征对直升机飞行特性影响研究[J]. 西北工业大学学报
DENG Jinghui. Investigation on effects of time-frequency characteristics of ship airwake on helicopter flight characteristics[J]. Northwestern polytechnical university

舰艉流时/频特征对直升机飞行特性影响研究
邓景辉
中国直升机设计研究所, 江西 景德镇 333001
摘要:
发展了一套能够耦合非定常舰船流场的直升机飞行动力学模型。采用DES方法以获得高精度非定常舰船流场,并基于"单向耦合"思想构建了CFD向飞行力学模型的数据传递策略。以SFS2舰船模型和UH-60A直升机组合为研究对象,从直升机操纵余量和非定常载荷水平两方面分析了着舰过程中舰艉流场对常规单旋翼直升机的扰动特征。时均研究结果显示:对于右旋旋翼直升机,在右侧风情形下飞行员能够具有更多的总距操纵余量,但由于尾桨受侧洗流的影响,脚蹬余量相较于0°风向角情形会大幅降低。非定常水平结果表明:侧风情形下舰艉流场湍流脉动强度增大,使得飞行员的工作载荷要显著高于0°风向角情形;常规单旋翼直升机在其旋翼轴方向的气动力和力矩(即拉力和偏航力矩)的非定常波动是导致着舰过程中飞行员工作载荷增大的主要因素。
关键词:    直升机    舰船流场    飞行动力学    操纵余量    非定常水平   
Investigation on effects of time-frequency characteristics of ship airwake on helicopter flight characteristics
DENG Jinghui
China Helicopter Research and Development Institute, Jingdezhen 333001, China
Abstract:
A conventional helicopter flight dynamics model, which can be coupled with ship airwake date, is developed in this study. In the method, the ship airwake data is obtained by the high-accuracy DES model, and a strategy which can transmit CFD data to the flight dynamics model is established based on the "one-way" coupling idea. Then, the SFS2 ship model and UH-60A helicopter are chosen as a combination to investigate the influences of the spatial and temporal characteristics of ship airwake from the aspects of control margins and unsteady level. The time-averaged simulation results show that for the counterclockwise-rotor helicopter, although pilot could have more collective pitch margin under crosswind condition compared to the headwind condition, he might possess much less pedal margin due to the sidewash in the airflow. The unsteady results indicate that the unsteady loading level of the helicopter would increase significantly under the crosswind condition compared to the headwind condition due to the increase of turbulent density in the airwake. Furthermore, for the conventional helicopter, the disturbances on the forces and moments which along the rotor hub (i.e., thrust and yaw moment) are the critical factors that increasing the pilot workload during the landing procedure.
Key words:    helicopter    ship airwake    flight dynamics model    control margin    unsteady level   
收稿日期: 2021-01-16     修回日期:
DOI: 10.1051/jnwpu/20213951087
通讯作者:     Email:
作者简介: 邓景辉(1965-),中国直升机设计研究所总设计师,主要从事直升机旋翼设计研究。
相关功能
PDF(3723KB) Free
打印本文
把本文推荐给朋友
作者相关文章
邓景辉  在本刊中的所有文章

参考文献:
[1] ADVANI S K, WILKINSON C H. Dynamic interface modelling and simulation:a unique challenge[C]//Royal Aeronautical Society Conference on Helicopter Flight Simulation, London, 2001
[2] BLACKWELL J, ARNEY A M, GILBERT N E, et al. Modelling the helicopter/ship dynamic interface for the seahawk/FFG-7[C]//Australian Aeronautical Conference, 1993
[3] KÄÄRIÄ C H, WANG Y, PADFIELD G D, et al. Aerodynamic loading characteristics of a model-scale helicopter in a ship's airwake[J]. Journal of Aircraft, 2012, 49(5):1271-1278
[4] RAJAGOPALAN G, NIAZI S, WADCOCK A J, et al. Experimental and computational study of the interaction between a tandem-rotor helicopter and a ship[J]. American Helicopter Society, 2005, 61(1):729
[5] BUNNELL J W. An integrated time-varying airwake in a UH-60 black hawk shipboard landing simulation[C]//AIAA modeling and simulation technologies conference and exhibit, Montreal, Canada, 2001:6-9
[6] ROSCOE M F, THOMPSON J H. JSHIP's dynamic interface modeling and simulation system:a simulation of the UH-60A helicopter/LHA shipboard environment task[C]//Proceedings 59th Annual Forum of the American Helicopter Society, Phoenix, 2003
[7] HODGE S J, ZAN S J, ROPER D M. Time-accurate ship airwake and unsteady aerodynamic loads modeling for maritime helicopter simulation[J]. Journal of the American Helicopter Society, 2009, 54(2):022005
[8] ALPMAN E, LONG L N, BRIDGES D O, et al. Fully-coupled simulations of the rotorcraft/ship dynamic interface[C]//Annual Forum Proceedings-American Helicopter Society, American Helicopter Society, 2007, 63(2):1367
[9] BRIDGES D O, HORN J F, ALPMAN E, et al. Coupled flight dynamics and CFD analysis of pilot workload in ship airwakes[C]//Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Hilton Head, 2007
[10] 孙鹏,耿雪,赵佳, 等. 风向对直升机旋翼与甲板流场结构影响[J]. 航空动力学报,2015(8):1802-1810 SUN Peng, GENG Xue, ZHAO Jia, et al. Influence of wind directions on the flow structures of helicopter rotor and deck[J]. Journal of Aerospace Power, 2015(8):1802-1810(in Chinese)
[11] 孙传伟, 孙文胜. 舰面流场对直升机着舰时悬停操纵的影响[J]. 南京航空航天大学学报, 1999, 31(6):614-619 SUN Chuanwei, SUN Wensheng. Analysis of unmanded helicopter hovering in ship flow field over flight deck[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1999, 31(6):614-619(in Chinese)
[12] 章晓冬, 侯志强, 胡国才, 等. 某型舰载直升机着舰风限图的计算[J]. 四川兵工学报, 2012, 33(10):30-33 ZHANG Xiaodong, HOU Zhiqiang, HU Guocai, et al. Calculation of save operation envelope of a shipboard helicopter[J]. Journal of Ordnance Equipment, 2012, 33(10):30-33(in Chinese)
[13] 杨俊. 共轴式直升机舰面起降风限图计算[J]. 海军航空工程学院学报, 2017, 32(1):149-153 YANG Jun. Calculation of save operation envelope of a coaxial helicopter on shipboard[J]. Journal of Naval Aeronautical and Astronautical University, 2017, 32(1):149-153(in Chinese)
[14] POLSKY S A. A computational study of unsteady ship airwake[C]//40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, 2002
[15] BALIN M G. Validation of a real-time engineering simulation of the UH-60A helicopter[R]. NASA-TM-88360, 1987
[16] KÄÄRIÄ C H, FORREST J S, OWEN I, et al. Simulated aerodynamic loading of an SH-60B helicopter in a ship's airwake[C]//35th European Rotorcraft Forum, Hamburg, Germany, 2009
[17] LEE R G, ZAN S J. Unsteady aerodynamic loading on a helicopter fuselage in a ship airwake[J]. Journal of the American Helicopter Society, 2004, 49(2):149-159
[18] FORREST J S, OWEN I, PADFIELD G D, et al, Ship-helicopter operating limits prediction using piloted flight simulation and time-accurate airwakes[J]. Journal of Aircraft, 2012, 49(4):1020-1031
相关文献:
1.严旭飞, 陈仁良, 辛冀.直升机不同尾桨距卡滞后的着陆轨迹和操纵优化[J]. 西北工业大学学报, 2019,37(6): 1138-1147