论文:2021,Vol:39,Issue(5):1012-1021
引用本文:
王小龙, 孙冲, 方群, 李琪, 宋硕. 基于干扰观测器的航天器编队抓捕控制方法[J]. 西北工业大学学报
WANG Xiaolong, SUN Chong, FANG Qun, LI Qi, SONG Shuo. Study on spacecraft formation capture control method based on disturbance observer[J]. Northwestern polytechnical university

基于干扰观测器的航天器编队抓捕控制方法
王小龙1, 孙冲1, 方群1, 李琪1,2, 宋硕1
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 西安现代控制技术研究所, 陕西 西安 710065
摘要:
在存在复合干扰的情况下,针对近距离低速翻滚空间非合作目标抓捕问题,提出了一种基于干扰观测器的多航天器协同避碰控制方法。建立了姿轨耦合的相对运动模型。利用干扰观测器对抓捕过程中的复合干扰进行估计并在控制律的设计中进行抵消。同时利用超二次曲面来描述空间非合作目标和抓捕航天器的外形,建立复合人工势场,并设计了具有避碰功能的鲁棒控制律。通过Lyapunov理论证明了该方法能够确保系统的闭环稳定性,并分析了系统的避碰性能。数值仿真结果验证了所提控制方案的有效性。
关键词:    航天器编队    干扰观测器    协同避碰控制    非合作目标抓捕   
Study on spacecraft formation capture control method based on disturbance observer
WANG Xiaolong1, SUN Chong1, FANG Qun1, LI Qi1,2, SONG Shuo1
1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Xi'an Modern Control Technology Research Institute, Xi'an 710065, China
Abstract:
In the presence of compound disturbances, a multi-spacecraft cooperative collision avoidance capture control method based on disturbance observer was proposed, which can solve the problem of low speed rolling non-cooperative target close-range capture in space. Firstly, a relative motion model of attitude and orbit coupling is established. Secondly, the disturbance observer is used to estimate and cancel the compound disturbance in the capture process. At the same time, the hyperquadric surfaces are used to describe the shape of space non-cooperative targets and capture spacecraft to establish a composite artificial potential field, and a robust control law with collision avoidance function is also designed. Finally, the stability of the controlled system is proved by using Lyapunov function, and the collision avoidance performance of the system is analyzed. Numerical simulations are carried out to evaluate the effectiveness of the proposed control scheme.
Key words:    spacecraft formation    disturbance observer    cooperative collision avoidance control    non-cooperative target capture   
收稿日期: 2021-04-15     修回日期:
DOI: 10.1051/jnwpu/20213951012
基金项目: 国家自然科学基金(11802238)资助
通讯作者: 方群(1960-),女,西北工业大学教授,主要从事飞行力学与控制研究。e-mail:qfang@nwpu.edu.cn     Email:qfang@nwpu.edu.cn
作者简介: 王小龙(1997-),西北工业大学硕士研究生,主要从事航天飞行力学与控制研究。
相关功能
PDF(3347KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王小龙  在本刊中的所有文章
孙冲  在本刊中的所有文章
方群  在本刊中的所有文章
李琪  在本刊中的所有文章
宋硕  在本刊中的所有文章

参考文献:
[1] 张楷田, 楼张鹏, 王永, 等. 日心悬浮轨道航天器编队飞行控制[J]. 信息与控制, 2016, 45(1):114-119 ZHANG Kaitian, LOU Zhangpeng, WANG Yong, et al. Control of spacecraft formation flying around heliocentric displaced orbits[J]. Information And Control, 2016, 45(1):114-119(in Chinese)
[2] 蔡光斌, 闫杰, 赵玉山, 等. 具有随机多跳时变时延的多航天器协同编队姿态一致性[J]. 控制理论与应用,2018,35(10):1415-1421 CAI Guanbin, YAN Jie, ZHAO Yushan, et al. Attitude consensus of multi-spacecraft cooperative formation with stochastic multi-hop time-varying delay[J]. Control Theory & Applications, 2018, 35(10):1415-1421(in Chinese)
[3] 关启学, 代京, 王伟光, 姜月秋. 无角速度测量和饱和输入条件下航天器编队姿态有限时间跟踪控制[J]. 航空兵器, 2020, 27(4):39-44 GUAN Qixue, DAI Jing, WANG Weiguang, et al. Finite-time spacecraft formation attitude tracking control with angular velocity-free measurement and saturation input[J]. Aero Weaponry, 2020, 27(4):39-44(in Chinese)
[4] 杨盛庆, 叶文郁, 何煜斌, 等. 基于势场法的卫星编队保持及其稳定性分析[J]. 系统仿真学报, 2019, 31(2):332-338 YANG Shengqing, YE Wenyu, HE Yubin, et al. Satellite formation keeping and its stability analysis based on artificial potential field method[J]. Journal of System Simulation, 2019, 31(2):332-338(in Chinese)
[5] 田静, 程月华, 姜斌, 等. 有限通信情况下的航天器编队协同控制研究[J].航天控制,2014,32(4):75-81 TIAN Jing, CHENG Yuehua, JIANG Bin, et al. Research on cooperative control of spacecraft formation under limited information-exchange[J]. Aerospace Control, 2014,32(4):75-81(in Chinese)
[6] LEE U, MESBAHI M. Feedback control for spacecraft reorientation under attitude constraints via convex potentials[J]. IEEE Trans on Aerospace & Electronic Systems, 2014, 50(4):2578-2592
[7] LI P, ZHU Z H. Line-of-sight nonlinear model predictive control for autonomous rendezvous in elliptical orbit[J]. Aerospace Science and Technology, 2017, 69:236-243
[8] ZONG L, LUO J, WANG M. Optimal concurrent control for space manipulators rendezvous and capturing targets under actuator saturation[J]. IEEE Trans on Aerospace and Electronic Systems, 2020, 56(6):4841-4855
[9] CONG Y Z, Du H B, JIN Q C, et al. Formation control for multiquadrotor aircraft:connectivity preserving and collision avoidance[J]. International Journal of Robust and Nonlinear Control, 2020, 30(6):2352-2366
[10] 马广富,董宏洋,胡庆雷. 考虑避障的航天器编队轨道容错控制律设计[J]. 航空学报,2017,38(10):206-216 MA Guangfu, DONG Hongyang, HU Qinglei. Fault tolerant translational control for spacecraft formation flying with collision a voidance requirement[J]. Acta Aeronautica et Astronautica Sinica, 2017,38(10):206-216(in Chinese)
[11] 薛向宏,岳晓奎,袁建平. 主从式编队航天器连通性保持与碰撞规避[J]. 宇航学报,2020,41(7):959-969 XUE Xianghong, YUE Xiaokui, YUAN Jianping. Connectivity preservation and collision avoidance for leader-follower spacecraft formation flying[J]. Journal of Astronautics, 2020,41(7):959-969(in Chinese)
[12] WU G Q, SONG S M, SUN J G. Finite-time dynamic surface antisaturation control for spacecraft terminal approach considering safety[J]. Journal of Spacecraft and Rockets, 2018, 55(2):1-14
[13] LI Q, SUN C, SONG S, et al. Robust adaptive control for spacecraft final proximity maneuvers with safety constraint and input quantization[J]. ISA Transactions, 2020, 11:35-46
[14] LI Q, YUAN J P, WANG H. Sliding mode control for autonomous spacecraft rendezvous with collision avoidance[J]. Acta Astronautica, 2018, 151:743-751