论文:2021,Vol:39,Issue(5):954-961
引用本文:
张阳, 张群飞, 王樱洁, 何成兵, 史文涛. 一种低复杂度正交时频空间调制水声通信方法[J]. 西北工业大学学报
ZHANG Yang, ZHANG Qunfei, WANG Yingjie, HE Chengbing, SHI Wentao. A low-complexity orthogonal time frequency space modulation method for underwater acoustic communication[J]. Northwestern polytechnical university

一种低复杂度正交时频空间调制水声通信方法
张阳, 张群飞, 王樱洁, 何成兵, 史文涛
1. 西北工业大学 深圳研究院, 广东 深圳 518057;
2. 西北工业大学 航海学院, 陕西 西安 710072
摘要:
相比较正交频分复用,正交时频空间(orthogonal time frequency space,OTFS)调制具有较低峰均功率比,能有效抵抗多普勒产生的时间选择性衰落,在双扩展信道中具有良好的性能优势。然而,常规的OTFS线性最小均方误差(linear minimum mean square error,LMMSE)方法复杂度高,不易实时处理,为解决这一问题,提出了基于最优坐标下降的无穷范数约束均衡算法。该算法通过一定的迭代次数得到最优解,避免了直接矩阵求逆,采用无穷范数约束均衡提升了符号检测的性能增益。同时利用OTFS在时延-多普勒域信道矩阵每列向量二范数平方相等和稀疏性的特点,进一步降低坐标下降的复杂度。在设计的水声通信场景下,对所提均衡算法的有效性进行了仿真验证,结果表明所提均衡算法在保证低复杂度情况下误码性能接近最小均方误差性能。
关键词:    水声通信    正交时频空间    最优坐标下降    无穷范数约束    时延-多普勒   
A low-complexity orthogonal time frequency space modulation method for underwater acoustic communication
ZHANG Yang, ZHANG Qunfei, WANG Yingjie, HE Chengbing, SHI Wentao
1. Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China;
2. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Compared with the orthogonal frequency division multiplexing (OFDM) modulation, the orthogonal time frequency space(OTFS) modulation has a lower peak-to-average power ratio. It can effectively resist the time selective fading caused by the Doppler effect and has significant performance advantages over doubly dispersive channels. However, the conventional OTFS linear minimum mean square error (LMMSE) method has a high complexity and is not easy to process in real time. In order to solve this problem, we propose a low-complexity equalization algorithm with infinite norm constraints based on the optimal coordinate reduction. The equalization algorithm not only obtains the optimal solution through a certain number of iterations and avoids direct matrix inversion but also equalizes infinite norm constraints to improve the symbol detection performance gains. At the same time, the OTFS delay-Doppler channel matrix we utilize is sparse and the two-norm squares of each column vector equally reduces the complexity of optimal coordinate descent. Finally, the simulation in the underwater acoustic communication scenario we designed verify the effectiveness of the proposed equalization algorithm. The simulation results show that the performance of the proposed equalization algorithm is close to that of the LMMSE method, while its low complexity is ensured.
Key words:    underwater acoustic communication    orthogonal time frequency space    optimal coordinate descent    infinite-norm constraint    delay-Doppler channel matrix   
收稿日期: 2020-12-29     修回日期:
DOI: 10.1051/jnwpu/20213950954
基金项目: 深圳市科技创新委员会基金(JCYJ20180306170932431)与国家自然科学基金(62071383和61771396)资助
通讯作者: 何成兵(1981-),西北工业大学教授,主要从事水声通信研究。e-mail:hcb@nwpu.edu.cn     Email:hcb@nwpu.edu.cn
作者简介: 张阳(1990-),西北工业大学博士研究生,主要从事移动水声通信研究。
相关功能
PDF(1719KB) Free
打印本文
把本文推荐给朋友
作者相关文章
张阳  在本刊中的所有文章
张群飞  在本刊中的所有文章
王樱洁  在本刊中的所有文章
何成兵  在本刊中的所有文章
史文涛  在本刊中的所有文章

参考文献:
[1] STOJANOVIC M, PREISIG J. Underwater acoustic communication channels:propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009,47(1):84-89
[2] LI B, ZHOU S, STOJANOVIC M, et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts[J]. IEEE Journal of Oceanic Engineering, 2008,33(2):198-209
[3] FARHANG A, REZAZADEHREYHANI A, DOYLE L E, et al. Low complexity modem structure for OFDM-based orthogonal time frequency space modulation[J]. IEEE Wireless Communications Letters, 2017,7(3):344-347
[4] MONK A, HADANI R, TSATSANIS M, et al. OTFS-orthogonal time frequency space[J/OL]. (2016-08-09)[2020-12-29]. https://arXiv.org/abs/1608.02993
[5] HADANI R, RAKIB S, MOLISCH A F, et al. Orthogonal time frequency space(OTFS) modulation for millimeter-wave communications systems[C]//2017 IEEE MTT-S International Microwave Symposium, 2017:681-683
[6] RAVITEJA P, PHAN K T, HONG Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Trans on Wireless Communications, 2018,17(10):6501-6515
[7] RAVITEJA P, PHAN K T, JIN Q, et al. Low-complexity iterative detection for orthogonal time frequency space modulation[C]//2018 IEEE Wireless Communications and Networking Conference, 2018:1-6
[8] YUAN W, WEI Z, YUAN J, et al. A simple variational Bayes detector for orthogonal time frequency space(OTFS) modulation[J]. IEEE Tran on Vehicular Technology, 2020, 69(7):7976-7980
[9] YUAN Z, LIU F, YUAN W, et al. Iterative detection for orthogonal time frequency space modulation with unitary approximate message passing[J/OL]. (2021-07-21)[2021-09-27]. https://ieeexplore.ieee.org/abstract/document/9492800
[10] LI L, LIANG Y, FAN P, et al. Low complexity detection algorithms for OTFS under rapidly time-varying channel[C]//2019 IEEE 89th Vehicular Technology Conference, 2019:1-5
[11] MURALI K R, CHOCKALINGAM A. On OTFS modulation for high-Doppler fading channels[C]//2018 Information Theory and Applications Workshop, 2018:1-10
[12] CHENG J, GAO H, XU W, et al. Low-complexity linear equalizers for OTFS exploiting two-dimensional fast Fourier transform[J/OL]. (2019-09-02)[2021-12-29]. https://arxiv.org/abs/1909.00524
[13] SURABHI G D, CHOCKALINGAM A. Low-complexity linear equalization for OTFS modulation[J]. IEEE Communications Letters, 2020,24(2):330-334
[14] TIWARI S, DAS S S, RANGAMGARI V. Low complexity LMMSE receiver for OTFS[J]. IEEE Communications Letters, 2019, 23(12):2205-2209
[15] CHEN J. A low complexity data detection algorithm for uplink multiuser massive MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2017,35(8):1701-1714
[16] SEIDEL P, PAUL S, RUST J. Low-complexity 2-coordinates descent for near-optimal MMSE soft-output massive MIMO uplink data detection[C]//201927th European Signal Processing Conference, 2019:1-5
[17] WRIGHT S J. Coordinate descent algorithms[J]. Mathematical Programming, 2015,151(1):3-34
[18] RAVITEJA P, HONG Y, VITERBO E, et al. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS[J]. IEEE Trans on Vehicular Technology, 2019, 68(1):957-961
[19] SOCHELEAU F X, LAOT C, PASSERIEUX J M. A maximum entropy framework for statistical modeling of underwater acoustic communication channels[C]//Oceans'10 IEEE, Sydney, 2010:1-7
[20] ZENG W J, XU W. Fast estimation of sparse doubly spread acoustic channels[J]. The Journal of the Acoustical Society America, 2012, 131(1):303-317
[21] QU F, NIE X, XU W. A two-stage approach for the estimation of doubly spread acoustic channels[J]. IEEE Journal of Oceanic Engineering, 2014, 40(1):131-143