论文:2021,Vol:39,Issue(5):937-944
引用本文:
王磊, 陈克安, 胥健, 齐旺. 应用卡尔曼滤波的有源头靠噪声控制策略[J]. 西北工业大学学报
WANG Lei, CHEN Kean, XU Jian, QI Wang. Noise control with Kalman filter for active headrest[J]. Northwestern polytechnical university

应用卡尔曼滤波的有源头靠噪声控制策略
王磊, 陈克安, 胥健, 齐旺
西北工业大学 航海学院, 陕西 西安 710072
摘要:
针对有源头靠中虚拟误差点噪声信号的自适应控制问题,提出了一种应用卡尔曼滤波(KF)的控制策略。与基于梯度的算法相比,KF具有更快的收敛速度和更好的收敛性能。在虚拟误差传感的基础上建立了系统的状态方程,在状态变量中仅考虑控制滤波器权系数。为了保证算法收敛,给出了KF参数的在线更新策略,同时在算法中引入快速阵列方法从而降低运算量。仿真结果表明,文中提出的策略能够有效提升系统的收敛速度,降低虚拟误差点处的噪声信号。
关键词:    有源噪声控制    卡尔曼滤波    有源头靠   
Noise control with Kalman filter for active headrest
WANG Lei, CHEN Kean, XU Jian, QI Wang
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
A control strategy with Kalman filter (KF) is proposed for active noise control of virtual error signal for active headset. Comparing with the gradient based algorithm, KF algorithm has faster convergence speed and better convergence performance. In this paper, the state equation of the system is established on the basis of virtual error sensing, and only the weight coefficients of the control filter are considered in the state variables. In order to ensure the convergence performance of the algorithm, an online updating strategy of KF parameters is proposed. The fast-array method is also introduced into the algorithm to reduce the computation. The simulation results show that the present strategy can improve the convergence speed and effectively reduce the noise signal at the virtual error point.
Key words:    active noise control    Kalman filter    active headset   
收稿日期: 2021-01-12     修回日期:
DOI: 10.1051/jnwpu/20213950937
基金项目: 国家自然科学基金(11974287)资助
通讯作者: 陈克安(1965-),西北工业大学教授,主要从事噪声与振动控制研究。e-mail:kachen@nwpu.edu.cn     Email:kachen@nwpu.edu.cn
作者简介: 王磊(1994-),西北工业大学博士研究生,主要从事有源噪声控制研究。
相关功能
PDF(2321KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王磊  在本刊中的所有文章
陈克安  在本刊中的所有文章
胥健  在本刊中的所有文章
齐旺  在本刊中的所有文章

参考文献:
[1] 陈克安. 有源噪声控制[M]. 北京:国防工业出版社, 2014 CHEN Kean. Active noise control[M]. Beijing:Aotion Defence Indeustny Press, 2014(in Chinese)
[2] RAFAELY B, ELLIOTT S J, GARCIA-BONITO J. Broadband performance of an active headrest[J]. The Journal of Acoustic of Society of America, 1999, 106(2):787-793
[3] GARCIA-BONITO J, ELLIOTT S J. Generation of zones of quiet using a virtual microphone arrangement[J]. The Journal of Acoustic of Society of America, 1997, 101(6):3498-3516
[4] MOREAU D, CAZZOLATO B, ZANDER A, et al. A review of virtual sensing algorithms for active noise control[J]. Algorithms, 2008, 1(2):69-99
[5] 李楠, 杨飞然, 杨军. 一种基于虚拟传感的无需误差传声器的自适应有源降噪方法[J]. 应用声学, 2019, 38(1):85-92 LI Nan, YANG Feiran, YANG Jun. An adaptive active noise method without an error microphone based on virtual microphone technique[J]. Journal of Applied Acoustics, 2019, 38(1):85-92(in Chinese)
[6] YUAN J. Virtual sensing for broadband noise control in a lightly damped enclosure[J]. The Journal of Acoustic of Society of America, 2004, 116(2):934-941
[7] ROURE A, ALBARRAZIN A. The remote microphone technique for active noise control[C]//The International Symposium on Active Control of Sound and Vibration, 1999:1233-1244
[8] KESTELL C D, CAZZOLATO B S, HANSEN C H. Active noise control in a free field with virtual sensors[J]. The Journal of Acoustic of Society of America, 2001, 109(1):232-243
[9] DIAZ J. A local active noise control system based on a virtual-microphone technique for railway sleeping vehical applications[J]. Mechanical System and Signal Processing, 2006, 20(8):2259-2276
[10] PETERSENA C D, FRAANJEB R, CAZZOLATOA B S, et al. A Kalman filter approach to virtual sensing for active noise control[J]. Mechanical System and Signal Processing, 2008, 22:490-508
[11] LOPES P A C, PIEDADE M S. A Kalman filter approach to avtive noise control[C]//European Signal Processing Conference, 2000
[12] LOPES P A C, GERALD J A B, PIEDADE M S. The random walk model Kalman filter in multichannel active noise control[J]. IEEE Signal Processing Letters, 2015, 22(12):2244-2248
[13] VAN OPHEM S, BERKHOFF A P. Multi-channel Kalman filters for active noise control[J]. The Journal of Acoustic of Society of America, 2013, 133(4):2105-2115
[14] LIEBICH S, FABRY J, JAX P, et al. Time-domain Kalman filter for active noise cancellation headphone[C]//European Signal Processing Conference, 2017:593-597
[15] SAYED A H. Fundamentals of adaptive filtering[M]. Hoboken:John Wiley and Sons, 2003
[16] SAYED A H, Kailath T. Extended Chandrasekhar Recursions[J]. IEEE Trans on Automatic Control, 1994, 39(3):619-623