论文:2021,Vol:39,Issue(4):847-857
引用本文:
贾鹏, 张哲华, 王向宇, 曲咏哲, 张浩, 王洪海. 基于偏相关分析的水下控制系统动态响应研究[J]. 西北工业大学学报
JIA Peng, ZHANG Zhehua, WANG Xiangyu, QU Yongzhe, ZHANG Hao, WANG Honghai. Research on dynamic response of subsea control system based on partial correlation analysis[J]. Northwestern polytechnical university

基于偏相关分析的水下控制系统动态响应研究
贾鹏1, 张哲华1, 王向宇1, 曲咏哲2, 张浩2, 王洪海1
1. 哈尔滨工程大学 机械工程学院, 黑龙江 哈尔滨 150001;
2. 海军青岛通信修理厂, 山东 青岛 266000
摘要:
以某具体水下液压系统为研究对象,建立闭式环形回路和闭式非环形回路的仿真模型,通过单因素分析,得出不同管路阻尼设置、水下蓄能器和执行器等内部因素和水深、回接距离等外部因素的系统响应曲线。基于单因素仿真数据,利用偏相关理论开展水下液压系统控制响应影响因素的相关性分析,获取了影响水下液压系统控制响应的主要因素排序,为提高水下液压系统响应提供参考。
关键词:    水下液压系统    控制响应    影响因素    单因素分析    偏相关   
Research on dynamic response of subsea control system based on partial correlation analysis
JIA Peng1, ZHANG Zhehua1, WANG Xiangyu1, QU Yongzhe2, ZHANG Hao2, WANG Honghai1
1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China;
2. Qingdao Navy Communications Repair Plant, Qingdao 266000, China
Abstract:
In this article, taking a specific underwater hydraulic system as the research object, a closed loop circuit and a closed non-loop circuit simulation models are established; and through a single factor analysis, the interior factors such as different pipeline damping settings, underwater accumulators and actuators, and external factors such as water depth and return distance are analyzed. System response curves of these factors are obtained. Based on the single-factor simulation data, the partial correlation theory is used to analyze the correlation of the influencing factors of the control response for the underwater hydraulic system, and the order of the main factors affecting the control response of the underwater hydraulic system is obtained, which provides a reference for improving the response of the underwater hydraulic system.
Key words:    underwater hydraulic system    control response    influence factor    single factor analysis    partial correlation analysis   
收稿日期: 2020-08-18     修回日期:
DOI: 10.1051/jnwpu/20213940847
基金项目: 工业部高技术船舶科研项目(Z20TZFNT0714)、工业部高技术船舶科研项目(2019GXB01-08)与海洋石油工程股份有限公司项目资助
通讯作者:     Email:
作者简介: 贾鹏(1980-),哈尔滨工程大学副教授,主要从事水下控制系统和水下作业装备研究。e-mail:13633605161@139.com
相关功能
PDF(2433KB) Free
打印本文
把本文推荐给朋友
作者相关文章
贾鹏  在本刊中的所有文章
张哲华  在本刊中的所有文章
王向宇  在本刊中的所有文章
曲咏哲  在本刊中的所有文章
张浩  在本刊中的所有文章
王洪海  在本刊中的所有文章

参考文献:
[1] 李志刚, 贾鹏, 王洪海, 等. 水下生产系统发展现状和研究热点[J]. 哈尔滨工程大学学报, 2019, 40(5):944-952 LI Zhigang, JIA Peng, WANG Honghai, et al. Development trend and active research areas of subsea production system[J]. Journal of Harbin Engineering University, 2019, 40(5):944-952(in Chinese)
[2] 刘培林, 张汝彬, 何宁强, 等. 基于AMESim水下液压控制系统仿真分析[J]. 机床与液压, 2017, 45(8):66-73 LIU Peilin, ZHANG Rubin, HE Ningqiang, et al. Simulation and analysis of underwater hydraulic control system based on AMESim[J]. Machine Tool and Hydraulic Pressure, 2017, 45(8):66-73(in Chinese)
[3] 姜琳, 刘立新, 梁政, 等. 紧急放空情况下脐带缆内液压管路建模与仿真[J]. 西南石油大学学报, 2012, 34(3):169-173 JIANG Lin, LIU Lixin, LIANG Zheng, et al. Modeling and simulation of hydraulic pipeline in umbilical cord under emergency venting[J]. Journal of Southwest Petroleum University, 2012, 34(3):169-173(in Chinese)
[4] 王鑫, 左信, 杨青青, 等. 水下采油树液压执行机构开启过程中相互干扰的研究[J]. 海洋工程装备与技术, 2016, 3(06):350-355 WANG Xin, ZUO Xin, YANG Qingqing, et al. Study on interference of hydraulic actuator in underwater tree opening process[J]. Marine Engineering Equipment and Technology, 2016, 3(6):350-355(in Chinese)
[5] 王鑫, 左信, 马恬然, 等. 水下采油树液压系统高压回油压力分析[J]. 海洋工程装备与技术, 2016, 3(5):297-304 WANG Xin, ZUO Xin, MA Tianran, et al. Analysis of high-pressure oil return pressure of underwater tree hydraulic system[J]. Marine Engineering Equipment and Technology, 2016, 3(5):297-304(in Chinese)
[6] 程寒生, 周美珍, 顾临怡. 水下采油树液压控制管路阻尼匹配研究[J]. 液压与气动, 2011(3):19-23 CHENG Hansheng, ZHOU Meizhen, GU Linyi. Research on damping matching of hydraulic control pipeline of underwater oil tree[J]. Hydraulic and Pneumatic, 2011(3):19-23(in Chinese)
[7] WANG Liquan, WANG Xiangyu, LIZHANG Hanyi, et al. Design and reliability analysis of the electrical control system of the subsea control module[J]. Journal of Systems and Control Engineering, 2019, 233(6):720-733
[8] YAO Jianjun, WANG Chengjun. Model reference adaptive control for a hydraulic underwater manipulator[J]. Journal of Vibration and Control, 2012, 18(6):893-902
[9] 侯广信, 安维峥, 孙钦, 等. 水下复合电液控制系统液压控制响应分析[J]. 石油机械, 2015, 43(6):40-45 HOU Guangxin, AN Weizheng, SUN Qin, et al. Hydraulic control response analysis of underwater composite electro-hydraulic control system[J]. Petroleum Machinery, 2015,43(6):40-45(in Chinese)
[10] WANG Feng, CHEN Ying, et al. Design and experimental study of oil-based pressure-compensated underwater hydraulic system[J]. Proceedings of the Institution of Mechanical Engineers, 2014, 228(4):221-232
[11] 赵弘, 胡浩然. 基于响应面法的长管道水下液压系统优化设计[J]. 机床与液压, 2016, 44(19):86-93 ZHAO Hong, HU Haoran. Optimization design of long pipeline underwater hydraulic system based on response surface method[J]. Machine Tool and Hydraulic Pressure, 2016, 44(19):86-93(in Chinese)
[12] 李秋, 易雷浩, 唐君实, 等. 火驱油墙形成机理及影响因素[J]. 石油勘探与开发, 2018, 45(3):474-481 LI Qiu, YI Leihao, TANG Junshi, et al. Mechanisms and influencing factors of the oil bank in fire flooding[J]. Petroleum exploration and development, 2018, 45(3):474-481(in Chinese)
[13] 郭海东, 刘涛, 牛宏伟. 偏相关理论在发动机振动分析中的应用[J]. 机械研究与应用, 2019, 32(02):25-28 GUO Haidong, LIU Tao, NIU Hongwei. Application of partial correlation theory in engine vibration analysis[J]. Mechanical Research and Application, 2019, 32(2):25-28(in Chinese)
[14] 蔡力钢, 李广朋, 程强, 等. 基于粗糙集与偏相关分析的机床热误差温度测点约简[J]. 北京工业大学学报, 2016, 42(7):969-974 CAI Ligang, LI Guangpeng, CHENG Qiang, et al. Reduction of thermal error temperature measurement points of machine tools based on rough set and partial correlation analysis[J]. Journal of Beijing University of Technology, 2016, 42(7):969-974(in Chinese)
[15] 吴凯, 冯佰威, 常海超. 基于偏相关性分析的船型优化设计方法[J]. 船舶工程, 2016, 38(10):46-51 WU Kai, FENG Baiwei, CHANG Haicao. Ship type optimization design method based on partial correlation analysis[J]. Marine Engineering, 2016, 38(10):46-51(in Chinese)