论文:2021,Vol:39,Issue(4):794-800
引用本文:
胥健, 陈克安, 王磊, 张亚洲. 基于平面波分解的封闭空间次级声源布局优化[J]. 西北工业大学学报
XU Jian, CHEN Kean, WANG Lei, ZHANG Yazhou. Optimization of secondary source configuration in enclosure using plane wave decomposition[J]. Northwestern polytechnical university

基于平面波分解的封闭空间次级声源布局优化
胥健1, 陈克安1, 王磊1, 张亚洲2
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 西安艾科特声学科技有限公司, 陕西 西安 710068
摘要:
封闭空间有源噪声控制系统的次级声源布局优化一般只关注离散点的降噪需求,导致空间区域降噪效果不理想,而且需要预先知道误差传感器布局信息。为解决该问题,提出一种面向空间降噪的代价函数。利用声场的平面波分解,获取初级声场平面波和各备选次级声源的单位次级声场平面波作为布局优化先验信息,以此构造波域有源控制代价函数,优化方法采用模拟退火搜索。以刚性壁矩形腔为对象,利用波域先验信息解析值与2种空间域布局优化方法结果做比较,表明所提方法在不依赖于误差点位置信息的情况下,能获得更优的空间声势能降噪效果;利用随机分布的传声器测量估计波域先验信息做布局优化,结果说明实际中所选布局能够达到比空间域方法更优的空间声势能降噪效果,但测量传声器位置对结果影响较大。
关键词:    有源噪声控制    次级声源布局    平面波分解    声场重构   
Optimization of secondary source configuration in enclosure using plane wave decomposition
XU Jian1, CHEN Kean1, WANG Lei1, ZHANG Yazhou2
1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. Xi'an ACT Acoustic Science and Technology Co., Ltd, Xi'an 710068, China
Abstract:
The optimization of secondary source configuration for an active noise control (ANC) system in its enclosed space generally focuses on noise reduction requirements at discrete points only. This may lead to the poor noise reduction performance in the whole spatial region, and it is necessary to know the information on error sensor positions in advance. To address this problem, a cost function for spatial-region-oriented noise reduction is proposed. The plane wave decomposition of the enclosed sound field is used to obtain the primary field plane waves and the unit secondary field plane wave of each candidate secondary source as the prior knowledge for configuration optimization, so as to formulate a wave-domain ANC cost function. The optimization method adopts the simulated annealing search. Taking a rigid-walled rectangular cavity as an example, the optimization method is firstly compared with two space-domain methods by using analytic values of the wave-domain prior knowledge. The comparison results show that the better reduction of spatial acoustic potential energy can be achieved independent of the error sensor configuration information. Then the estimated values of the wave-domain prior knowledge through measuring randomly distributed microphones are used to optimize the configuration of the ANC system. The optimization results suggest that the noise reduction of spatial acoustic potential energy of the optimized configuration can be better than that of the space-domain method, but the microphone positions have a great influence on the noise reduction performance.
Key words:    active noise control    secondary source configuration    plane wave decomposition    sound field reconstruction   
收稿日期: 2020-12-08     修回日期:
DOI: 10.1051/jnwpu/20213940794
基金项目: 国家自然科学基金(11974287)资助
通讯作者: 陈克安(1965-),西北工业大学教授,主要从事噪声控制研究。e-mail:kachen@nwpu.edu.cn     Email:kachen@nwpu.edu.cn
作者简介: 胥健(1992-),西北工业大学博士研究生,主要从事声场重构与再现研究。
相关功能
PDF(1649KB) Free
打印本文
把本文推荐给朋友
作者相关文章
胥健  在本刊中的所有文章
陈克安  在本刊中的所有文章
王磊  在本刊中的所有文章
张亚洲  在本刊中的所有文章

参考文献:
[1] 陈克安. 有源噪声控制(第2版)[M]. 北京:国防工业出版社, 2014 CHEN Kean. Active noise control (2nd ed.)[M]. Beijing, National Defense Industry Press, 2014(in Chinese)
[2] BAEK K, ELLIOTT S J. Natural algorithms for choosing source locations in active control systems[J]. Journal of Sound and Vibration, 1995, 186(2):245-267
[3] ASANO F, SUZUKI Y, SWANSON D. Optimization of control source configuration in active control systems using Gram-Schmidt orthogonalization[J]. IEEE Trans on Speech and Audio Processing, 1999, 7(2):213-220
[4] KHALILIAN H, BAJIC I V, VAUGHAN R G. Comparison of loudspeaker placement methods for sound field reproduction[J]. IEEE/ACM Trans on Audio, Speech, and Language Processing, 2016, 24(8):1364-1379
[5] LILIS G, ANGELOSANTE D, GIANNAKIS G. Sound field reproduction using the lasso[J]. IEEE/ACM Trans on Audio, Speech, and Language Processing, 2010, 18(8):1902-1912
[6] GAUTHIER P A, LECOMTE P, BERRY A. Source sparsity control of sound field reproduction using the elastic-net and the lasso minimizers[J]. Journal of the Acoustical Society of America, 2017, 141(4):2315-2326
[7] RUCKMAN C E, FULLER C R. Optimizing actuator locations in active noise control systems using subset selection[J]. Journal of Sound and Vibration, 1995, 186(3):395-406
[8] LIU J, WANG X, WU M, et al. An active control strategy for the scattered sound field control of a rigid sphere[J]. Journal of the Acoustical Society of America, 2018, 144(1):52-58
[9] KOYAMA S, CHARDON G, DAUDET L. Optimizing source and sensor placement for sound field control:an overview[J]. IEEE/ACM Trans on Audio, Speech, and Language Processing, 2020, 28:696-714
[10] MANOLAS D A, BORCHERS I, TSAHALIS D T. Simultaneous optimization of the sensor and actuator positions for an active noise and/or vibration control system using genetic algorithms, applied in a dornier aircraft[J]. Engineering Computations, 200, 17(5):620-630
[11] MARTIN T, ROURE A. Optimization of an active noise control system using spherical harmonics expansion of the primary field[J]. Journal of Sound and Vibration. 1997, 201(5):577-593
[12] 陈克安, 胥健, 王磊, 等. 基于声场分解和稀疏正则化的二维空间次级声源布局优化[J]. 西北工业大学学报, 2019, 37(4):697-703 CHEN Kean, XU Jian, WANG Lei, et al. Optimization of secondary sources configuration in two-dimensional space based on sound field decomposition and sparsity-inducing regularization[J]. Journal of Northwestern Polytechnical University, 2019, 37(4):697-703(in Chinese)
[13] BETLEHEM T, ABHAYAPALA T D. Theory and design of sound field reproduction in reverberant rooms[J]. Journal of the Acoustical Society of America, 2005, 117(4):2100-2111
[14] ZHANG W, ABHAYAPALA T D, BETLEHEM T, et al. Analysis and control of multi-zone sound field reproduction using modal-domain approach[J]. Journal of the Acoustical Society of America, 2016, 140(3):2134-2144
[15] VERBURG S A, FERNANDEZ-GRANDE E. Reconstruction of the sound field in a room using compressive sensing[J]. Journal of the Acoustical Society of America, 2018, 143(6):3770-3779
[16] MIGNOT R, CHARDON G, DAUDET L. Low frequency interpolation of room impulse responses using compressed sensing[J]. IEEE/ACM Trans on Audio, Speech and Language Processing, 2014, 22(1):205-216
[17] HANSEN C, SNYDER S, QIU X, et al. Active control of noise and vibration (2nd ed.)[M]. Boca Raton, CRC Press, 2012
[18] WANG Y, CHEN K. Sparse plane wave decomposition of a low frequency sound field within a cylindrical cavity using spherical microphone arrays[J]. Journal of Sound and Vibration, 2018, 431:150-162
相关文献:
1.陈克安, 胥健, 王磊, 周兵.基于声场分解和稀疏正则化的二维空间次级声源布局优化[J]. 西北工业大学学报, 2019,37(4): 697-703