论文:2021,Vol:39,Issue(3):660-667
引用本文:
吴盛豪, 陈吉明, 陈钦, 裴海涛. 跨声速风洞槽壁试验段流场品质提升措施研究[J]. 西北工业大学学报
WU Shenghao, CHEN Jiming, CHEN Qin, PEI Haitao. Measurementimprovement of flow quality of slotted test section in transonic wind tunnel[J]. Northwestern polytechnical university

跨声速风洞槽壁试验段流场品质提升措施研究
吴盛豪1,2, 陈吉明1,2, 陈钦1,2, 裴海涛1,2
1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 四川 绵阳 621000;
2. 中国空气动力研究与发展中心 设备设计及测试技术研究所, 四川 绵阳 621000
摘要:
以CARDC 0.6 m连续式跨声速风洞为研究平台,开展了改善槽壁试验段流场品质的研究工作。风洞建成后的第一期调试,发现当试验段Ma>1.0时,槽壁试验段模型区内轴向马赫数分布均匀性较差,均方根偏差σMa>0.01。利用数值仿真计算辅助分析,确认低超声速时马赫数波动是由开槽数和开闭比选取不合适及喷管和试验段连接处曲率不连续引起。据此提出以下2种改进措施:①综合考虑洞壁干扰特性的影响,降低槽壁试验段开闭比,槽壁试验段改为开槽数为6、开闭比为6%的配置方案;②试验段入口设置弹性板,以实现喷管与试验段连接处型面曲线的曲率连续。对改进后的槽壁试验段数值仿真计算和试验验证,结果显示试验段模型区马赫数均匀性得到较好改善,均方根偏差指标达到了σMa≤0.001(Ma<1.0),σMa≤0.006(Ma≥1.0)的国际先进水平。
关键词:    连续式跨声速风洞    槽壁试验段    轴向马赫数    流场品质    数值模拟   
Measurementimprovement of flow quality of slotted test section in transonic wind tunnel
WU Shenghao1,2, CHEN Jiming1,2, CHEN Qin1,2, PEI Haitao1,2
1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
2. Facility Design and Instrumentation Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract:
Experimental studies were carried out in the 0.6 m×0.6 m continuous transonic wind tunnel of CARDC in order to investigate the flow characteristics of the slotted test section. Experimental results show that the root-mean-square deviation of axial Mach number in the model area is above 0.01 when the test section Mach number is above 1.0.Numerical simulation under the same conditions to investigate the flow characteristics of the slotted section, together with the experimental studies indicate tow phenomena may directly cause the Mach number fluctuation. Firstly, a straight section was installed to connect the nozzle and the test section in the wind tunnel. Weak shock waves due to the curvature discontinuity at the joint of the test section and the straight section contribute to Mach number fluctuation. Secondly, the open-area ratio of both the upper and lower wall of test section, each with 8 slots, is of 10%. The larger porosity leads to stronger expansion waves in the acceleration zone located at the inlet of the test section. The flow was over accelerated because of the stronger expansion wave and thus fluctuate the flow field severely. Two measures were taken to improve the flow quality of the slotted test section based on the above-mentioned analysis:①Flexible plate instead of solid straight plate was installed to bridge nozzle and test section to eliminate the curvature discontinuity;②Decreasing the open-area ratio of the upper and lower test section wall to 6% and the number of slots to 6. Numerical and experimental results show that the Mach number fluctuation in the model area was suppressed to a satisfactory degree.
Key words:    continuous transonic wind tunnel    slotted test section    axial Mach number    flow quality    numericalsimulation   
收稿日期: 2020-09-24     修回日期:
DOI: 10.1051/jnwpu/20213930660
基金项目: 空气动力学国家重点实验室(SKLA2019040203)资助
通讯作者: 陈吉明(1975-),中国空气动力研究与发展中心工程师,主要从事风洞气动设计及试验研究。e-mail:zhenjimy@sina.com     Email:zhenjimy@sina.com
作者简介: 吴盛豪(1990-),中国空气动力研究与发展中心工程师,主要从事风洞气动设计及试验研究。
相关功能
PDF(3346KB) Free
打印本文
把本文推荐给朋友
作者相关文章
吴盛豪  在本刊中的所有文章
陈吉明  在本刊中的所有文章
陈钦  在本刊中的所有文章
裴海涛  在本刊中的所有文章

参考文献:
[1] 伍荣林,王振羽.风洞设计原理[M]. 北京:北京航空学院出版社,1985 WU Rongli, WANG Zhenyu. Wind tunnel design principle[M]. Beijing:Beijing Aeronautical Institute Press, 1985(in Chinese)
[2] GLAZKOV S A, GORBUSHIN A R, IVANOV A I, et al. Numerical and experimental investigations of slot flow with respect to wind tunnel wall interference assessment[C]//24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Reston, 2004
[3] 刘光远, 魏志, 彭鑫,等. 跨声速风洞槽壁干扰评估与修正技术的应用[J]. 航空学报,2018,39(2):121499 LIU Guangyue, WEI Zhi, PENG Xing, et al. Application of slotted wall interference assessment and correction technique in transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica,2018, 39(2):121499(in Chinese)
[4] ATSUSHI H, MASATAKA K, TAKASHI A, et al. Wall interference analysis of transonic wind tunnel with porous wall model[C]//29th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, 2011
[5] TAISUKE N,ATSUSHI H, KEIICHI M, et al. Numerical analysis of wind tunnel wall interference on two-dimensional airfoil by new porous wall model[C]//30th AIAA Applied Aerodynamics Conference, New Orleans, Louisiana, 2012
[6] MASELAND J E J, LABAN M, VANDER V H. Development of CFD-based interference models for the DNW-HST transonic wind-tunnel[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, San Francisco, 2006
[7] WRIGHT R H. Characteristics of a transonic test sectionwith various slot shapes in the Langley 8-foot high-speedtunnel[R]. NACA-RM-L51H10,1951
[8] NELSON W J. Effects of slot size and geometry on the flow in rectangular tunnels at Mach numbers up to 1.4[R]. NACA-RM-L53B16,1953
[9] STEINLE F W. Development of the porous-slot geometry of the NWTC test section[C]//35th Aerospace Sciences Meeting and Exhibit, Reno NV, 1997
[10] 鞠炼, 白俊强,郭斌,等. 槽壁几何参数对跨声速风洞流场品质的影响[J]. 航空学报,2016,37(5):1440-1453 JU Lian, BAI Junqiang, GUO Bin, et al. Effect of geometry parameters on flow field quality in a transonic slotted wind tunnel[J]. Acta Aeronautica et AstronauticaSinica,2016,37(5):1440-1453(in Chinese)
[11] 丛成华,廖达雄,王海锋,等. 0.6 m连续式跨声速风洞槽壁试验段数值模拟[J]. 空气动力学学报,2013,31(6):752-757 CONG Chenghua, LIAO Daxiong, WANG Haifeng, et al. Numerical evaluation of aerodynamic design of slotted test section in 0.6 m closed circuittransonic wind tunnel[J]. Acta Aerodynamica Sinica,2013,31(6):752-757(in Chinese)
[12] 丛成华,彭强,王海锋. 槽壁试验段低超声速流场特性数值模拟[J]. 航空学报,2010,31(12):2302-2308 CONG Chenghua, PENG Qiang, WANG Haifeng. Numerical simulation on characteristics of slotted test section of low supersonic field[J]. Acta Aeronautica et Astronautica Sinica,2010,31(12):2302-2308(in Chinese)
[13] 杨小川, 王运涛, 洪俊武, 等. 跨声速风洞高速段一体化数值模拟研究[J]. 航空工程进展, 2020, 11(1):92-102 YANG Xiaochuan, WANG Yuntao, HONG Junwu, et al. Integrated numerical simulation research of high-speed section in transonic wind tunnel[J]. Advances in Aeronautical Science and Engineering, 2020, 11(1):92-102(in Chinese)
[14] 廖达雄,陈吉明,郑娟,等. 0.6 m连续式跨声速风洞总体性能[J]. 实验流体力学, 2018, 32(6):74-78 LIAO Daxiong, CHEN Jiming, ZHENG Juan, et al. General performance of 0.6 m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018,32(6):74-78(in Chinese)
[15] 吴盛豪, 裴海涛, 陈吉明, 等. 跨声速风洞中轴探管的应用[J]. 航空动力学报, 2018, 33(10):2451-2457 WU Shenghao, PEI Haitao, CHEN Jiming, et al. Application of center-line prove in transonic wind tunnel[J]. Journal of Aerospace Power, 2018, 33(10):2451-2457(in Chinese)
[16] 任泽斌, 廖达雄, 张国彪. 2 m×2 m超声速风洞引射器气动设计[J]. 航空动力学报, 2014, 29(10):2288-2293 REN Zebin, LIAO Daxiong, ZHANG Guobiao. Aerodynamic design of the ejector of 2 m×2 m supersonic wind tunnel[J]. Journal of Aerospace Power, 2014, 29(10):2288-2293(in Chinese)