论文:2021,Vol:39,Issue(3):624-632
引用本文:
孙振乾, 唐康华, 吴美平, 郭妍, 王雪莹. 基于运动约束抑制惯导误差的高速列车隧道内定位方法[J]. 西北工业大学学报
SUN Zhenqian, TANG Kanghua, WU Meiping, GUO Yan, WANG Xueying. High-speed train positioning method based on motion constraints suppressing INS error in tunnel[J]. Northwestern polytechnical university

基于运动约束抑制惯导误差的高速列车隧道内定位方法
孙振乾, 唐康华, 吴美平, 郭妍, 王雪莹
国防科技大学 智能科学学院, 湖南 长沙 410073
摘要:
高速列车在隧道内卫星信号缺失,仅依靠由微机电(micro-electromechanical systems,MEMS)器件构成的惯性导航系统(inertial navigation system,INS)误差较大。针对这一问题,在不增加额外传感器的情况下,提出一种利用考虑微惯性测量单元(micro inertial measurement unit,MIMU)在列车上安装角的运动约束来抑制INS误差(consider the installation angles for motion constraints to suppress INS error,CIAMC-INS)的方法。该方法在考虑MIMU安装角的基础上建立运动约束模型;分析转弯对运动约束模型的影响,得到运动约束使用条件;在卫星信号良好且满足运动约束使用条件时估计安装角;将估计得到的安装角应用于运动约束抑制纯惯性导航系统(pure inertial navigation system,P-INS)误差,以提高列车隧道内导航精度。在真实隧道环境和人为断开卫星信号情况下均进行了车载导航试验。试验结果表明,采用CIAMC-INS方法列车在隧道内的定位精度得到明显提高,相比P-INS和传统的不考虑安装角的运动约束抑制惯导(traditional motion constraints suppress INS error,TMC-INS)方法,水平定位精度分别提高85%和42%以上,验证了该方法的有效性。
关键词:    列车定位    隧道    运动约束    安装角    扩展卡尔曼滤波   
High-speed train positioning method based on motion constraints suppressing INS error in tunnel
SUN Zhenqian, TANG Kanghua, WU Meiping, GUO Yan, WANG Xueying
College of Artificial Intelligence, National University of Defense Technology, Changsha 410073, China
Abstract:
When the high-speed train is running in tunnel, the global navigation satellite system (GNSS) signal is completely lost, and only relying on the inertial navigation system (INS) composed of micro electro mechanical system (MEMS) devices makes large navigation error. To solve this problem, a method considering the installation angles of micro inertial measurement unit (MIMU) relative to the train body for motion constraints aided inertial navigation system (CIAMC-INS) is proposed, which does not need extra sensors. This method first establishes motion constraints model based on the installation angles of MIMU; secondly, the effect of turning on the motion constraints model is analyzed, and the use condition of motion constraints is obtained; then, the installation angles of MIMU are estimated when GNSS signal is good and the use condition of motion constraints is met; finally, the estimated installation angles are applied to the motion constraints to suppress the error of pure inertial navigation system (P-INS) to improve the navigation accuracy in tunnel. Based on this method, high-speed train navigation tests are carried out both in the real tunnel environment and in the case of artificially disconnected GNSS signal. The experimental results show that the navigation accuracy of the train in the tunnel is significantly improved, which verifies the effectiveness of the method.
Key words:    train positioning    tunnel    motion constraints    installation angles    extended Kalman filter   
收稿日期: 2020-11-20     修回日期:
DOI: 10.1051/jnwpu/20213930624
基金项目: 国家自然科学基金(61973312)与国防科技大学智能科学学院青年教师创新研究项目(ZN2019-16)资助
通讯作者:     Email:
作者简介: 孙振乾(1989-),国防科技大学博士研究生,主要从事惯性导航及组合导航研究。
相关功能
PDF(2111KB) Free
打印本文
把本文推荐给朋友
作者相关文章
孙振乾  在本刊中的所有文章
唐康华  在本刊中的所有文章
吴美平  在本刊中的所有文章
郭妍  在本刊中的所有文章
王雪莹  在本刊中的所有文章

参考文献:
[1] CHEN Qijin, NIU Xiaoji, ZHANG Quan, et al. Railway track irregularity measuring by GNSS/INS integration[J], Navigation, 2015, 62(1):83-93
[2] HAMID H A, NICHOLSON G L, ROBERTS C. Impact of train positioning inaccuracies on railway traffic management systems:framework development and impacts on TMS functions[J]. IET Intelligent Transport System, 2020, 14(6):534-544
[3] 刘射德, 陈光武, 王迪, 等. 一种基于GPS/DR/MM组合的列车定位方法研究[J]. 铁道科学与工程学报, 2018, 2(2):474-482 LIU Shede, CHEN Guangwu, WANG Di, et al. Train integrated positioning method based on GPS/DR/MM[J]. Journal of Railway Science and Engineering, 2018, 2(2):474-482(in Chinese)
[4] 刘江, 蔡伯根,王剑. 基于卫星导航系统的列车定位技术现状与发展[J]. 中南大学学报, 2014, 45:4033-4042 LIU Jiang, CAI Bogen, WANG Jian. Status and development of satellite navigation system based train positioning technology[J]. Journal of Central South University, 2014, 45:4033-4042(in Chinese)
[5] OTEGUI Jon, BAHILLO Alfonso, LOPETEGI Iban, et al. Evaluation of experimental GNSS and 10-DOF MEMS IMU measurements for train positioning[J]. IEEE Trans on Instrumentation and Measurement, 2019, 68(1):269-279
[6] 赵磊, 王宏伟, 宗干. 北斗星基增强系统列车定位应用研究[J]. 铁道通信信号, 2017,53(9):49-52 ZHAO Lei, WANG Hongwei, ZONG Gan. Research on the application of BDS satellite-based enhancement system for train positioning[J]. Railway Communication Signal, 2017, 53(9):49-52(in Chinese)
[7] JIANG Wei, CHEN Sirui, CAI Baigen, et al. A multi-sensor positioning method-based train localization system for low density line[J]. IEEE Trans on Vehicular Technology, 2018, 53(99):149-154
[8] ZHU Kai, GUO Xuan, JIANG Changhui, et al. MIMU/odometer fusion with state constraints for vehicle positioning during beidou signal outage:testing and results[J]. Sensors, 2020, 20(8):2302
[9] REIMER C, MULLER F J, HINUBER E L V. INS/GNSS/odometer data fusion in railway applications[C]//DGON Intertial Sensors and Systems, 2016
[10] 王鹏飞, 李卫东, 初宪武. 基于轨道约束H8滤波的北斗辅助列车定位算法研究[J]. 铁道科学与工程学报, 2019, 16(3):262-268 WANG Pengfei, LI Weidong, CHU Xianwu. Study on Beidou-assisted train positioning algorithm based on track constrained H8 filtering[J]. Journal of Railway Science and Engineering, 2019, 16(3):262-268(in Chinese)
[11] 梁飞. 一种基于运动模型和惯导陀螺仪的列车定位方法[J]. 控制与信息技术, 2019(6):67-70 LIANG Fei. A positioning method based on train motion model and inertial gyroscope[J]. Control and Information Technology, 2019(6):67-70(in Chinese)
[12] 杨菊花, 于月, 陈光武, 等. 基于列车运动约束的惯导误差抑制研究[J]. 铁道学报, 2020, 42(2):70-77 YANG Juhua, YU Yue, CHEN Guangwu, et al. Research on inertial navigation error suppression based on vehicle motion constraints[J]. Journal of the China Railway Society, 2020, 42(2):70-77(in Chinese)
[13] ZHANG Quan, CHEN Qijin, NIU Xiaoji, et al. Requirement assessment of the relative spatial accuracy of a motion-constrained GNSS/INS in shortwave track irregularity measurement[J]. Sensors, 2019, 19(23):52-56
[14] ZHU Feng, ZHOU Wuxing, ZHANG Yuxi, et al. Attitude variometric approach using DGNSS/INS integration to detect deformation in railway track irregularity measuring[J]. Journal of Geodesy, 2019, 93(9):1571-1587
[15] SYED Zainab F, AGGARWAL Priyanka, NIU Xiaoji. Civilian vehicle navigation:required alignment of the inertial sensors for acceptable navigation accuracies[J]. IEEE Trans on Vehicular Technology, 2008, 57(6):3402-3412
[16] 中国铁道第三勘察设计院集团有限公司. 高速铁路设计规范[S]. TB 10621-2009 China Railway Thrid Survey and Design Institu Gropu Co. High-speed railway design code[S]. TB 10621-2009(in Chinese)
[17] 付强文, 秦永元, 李四海, 等. 车辆运动学约束辅助的惯性导航算法[J]. 中国惯性技术学报, 2012(6):640-643 FU Qiangwen, QIN Yongyuan, LI Sihai, et al. Inertial navigation algorithm aided by motion constraints of vehicle[J]. Journal of Chinese Inertial Technology, 2012(6):640-643(in Chinese)
[18] MIAO Cunxiao, CHU Huanxin, CAO Juanjuan, et al. Steering angle adaptive estimation system based on GNSS and MEMS gyro[J]. Computers and Electronics in Agriculture, 2018(153):196-201
[19] CHEN He, ZHANG Zigang, ZHOU Ziling, et al. SINS/OD integrated navigation algorithm based on body frame position increment for land vehicles[J]. Mathematical Problems in Engineering, 2018(10):145-151
[20] 张为黎, 陈再刚, 王家鑫, 等. 转向架群配置高速货运动车组车辆曲线通过动态特性研究[J]. 内燃机与配件, 2020(11):21-25 ZHANG Weili, CHEN Zaigang, WANG Jiaxin, et al. Study on curve negotiation dynamic performance of vehicle in high-speed freight emu equipped with two bogie groups with each having two double-axle bogies[J]. Internal Combustion Engine and Accessories, 2020(11):21-25(in Chinese)
[21] GAO H, GROVES P D. Improving environment detection by behavior association for context-adaptive navigation[J]. Navigation, 2020, 67(1):43-60