论文:2021,Vol:39,Issue(3):484-491
引用本文:
闫红梅, 何明一, 梅寒雪. 一种自适应多层结构和空谱联合的高光谱图像异常检测方法[J]. 西北工业大学学报
YAN Hongmei, HE Mingyi, MEI Hanxue. Adaptive multi-layer structure with spatial-spectrum combination for hyperspectral image anomaly detection[J]. Northwestern polytechnical university

一种自适应多层结构和空谱联合的高光谱图像异常检测方法
闫红梅1,2, 何明一1, 梅寒雪1
1. 西北工业大学 电子信息学院, 陕西 西安 710129;
2. 西安科技大学 通信与信息工程学院, 陕西 西安 710054
摘要:
针对传统高光谱图像异常检测算法大多只考虑异常点与背景像素的光谱差异、忽略二者空间结构差异等问题,提出一种基于局部空间结构差异的自适应多层结构空谱联合异常检测方法。该新方法计算待测像素与背景窗像素在光谱维度上的差异以及内窗与背景窗在空间结构上的差异,重点构建了一种自适应多层结构的异常检测框架。该框架基于背景抑制的思想,构建多层级联的异常检测器,将每一层检测器的异常检测结果作为约束,抑制下一层检测器中输入图像的背景信息,从而自适应地完成背景抑制。实验结果表明,所提方法较传统的双窗模型(包括全局RX、局部RX和KRX)更好地利用了局部空间结构和光谱维度信息,自适应地对背景进行抑制,降低了虚警率,提升了对尺寸较小的异常目标的检测效果。
关键词:    高光谱图像    异常检测    空间结构差异    背景抑制    自适应多层结构   
Adaptive multi-layer structure with spatial-spectrum combination for hyperspectral image anomaly detection
YAN Hongmei1,2, HE Mingyi1, MEI Hanxue1
1. School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129, China;
2. School of Communication and Information Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
Abstract:
A new algorithm for hyperspectral image anomaly detection is proposed by designing an adaptive multi-layer structure with spatial-spectral combination information, which is different from the traditional anomaly detection algorithms only considering the spectral difference between the anomaly point and the background pixels, and ignoring the difference between the local spatial structure and spectrum. Firstly, the present algorithm not only calculates the spectral dimension difference between the pixels to be measured and the pixels in the background window, but also measures the spatial structure difference between the internal window and the background window. Mostly, an adaptive multi-layer structure for anomaly detection framework is carried out based on the idea of background suppression, and a multi-layered anomaly detector is constructed. The anomaly detection results of each layer of the detector are taken as the constraints, and the background information of the image input in the detector of the next layer is suppressed, adaptively suppressing the background noises. The experimental results show that the present algorithm makes better use of both the local spatial structure and the spectral dimension information than the traditional two-window models (global RX, local RX and KRX), adaptively suppresses background, reduces the false alarm rate, and improves the detection effect of the abnormal targets with fewer pixels.
Key words:    hyperspectral images    abnormal detection    spatial structure difference    background suppression    adaptive multi-layer structure   
收稿日期: 2020-09-30     修回日期:
DOI: 10.1051/jnwpu/20213930484
基金项目: 国家自然科学基金(61671387)资助
通讯作者:     Email:
作者简介: 闫红梅(1978-),女,西北工业大学博士研究生,主要从事高光谱图像分类与异常检测研究。
相关功能
PDF(2294KB) Free
打印本文
把本文推荐给朋友
作者相关文章
闫红梅  在本刊中的所有文章
何明一  在本刊中的所有文章
梅寒雪  在本刊中的所有文章

参考文献:
[1] 童庆禧,张兵,郑兰芬. 高光谱遥感:原理、技术与应用[M]. 北京:高等教育出版社,2006 TONG Qingxi, ZHANG Bin, ZHENG Lanfen. Hyperspectral remote sensing:the principle, technology and application[M]. Beijing:Higher Education Press, 2006(in Chinese)
[2] MANOLAKIS D, SHAW G. Detection algorithm for hyperspectral imaging applications[J]. IEEE Signal Processing Magazine, 2002, 19(1):29-43
[3] STEIN D, BEAVEN S, HOFF L, et al. Anomaly detection from hyperspectral imagery[J]. IEEE Signal Processing Magazine, 2002, 19(1):58-69
[4] MATTEOLI S, DIANI M, CORSINI G. A tutorial overview of anomaly detection in hyperspectral images[J]. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(7):5-28
[5] REED I, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Trans on Acoustics Speech and Signal Processing, 1990, 38(10):1760-1770
[6] LI W, DU Q. Decision fusion for dual-window-based hyperspectral anomaly detector[J]. Journal of Applied Remote Sensing, 2015, 9(1):097297-097297
[7] CHEN S, WANG W, WU C, et al. Real-time causal processing of anomaly detection for hyperspectral imagery[J]. IEEE Trans on Aerospace and Electronic Systems, 2014, 50:1511-1534
[8] ZHAO C, WANG Y, QI B, et al. Global and local real-time anomaly detectors for hyperspectral remote sensing imagery[J]. Remote Sensing, 2015, 7(4):3966-3985
[9] KWON H, NASRABADI N. Kernel RX-algorithm:a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Trans on Geoscience and Remote Sensing, 2005, 43(2):388-397
[10] HE M, MEI H, WU Y, YAN H. Weighted kernel-based signature subspace projection for hyperspectral target detection[C]//9th Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing, 2018:1-5
[11] BANERJEE A, BURLINA P, DIEHL C. A support vector method for anomaly detection in hyperspectral imagery[J]. IEEE Trans on Geoscience and Remote Sensing, 2006, 44(8):2282-2291
[12] KHAZAI S, HOMAYOUNI S, SAFARI A, et al. Anomaly detection in hyperspectral images based on an adaptive support vector method[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4):646-650
[13] GURRAM P, KWON H, HAN T. Sparse kernel-based hyperspectral anomaly detection[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5):943-947
[14] CUI X, TIAN Y, WENG L, et al. Anomaly detection in hyperspectral imagery based on low-rank and sparse decomposition[C]//International Society for Optics and Photonics International Conference on Graphic and Image Processing, 2014:9069
[15] ZHANG Y, DU B, ZHANG L, et al. A low-rank and sparse matrix decomposition-based mahalanobis distance method for hyperspectral anomaly detection[J]. IEEE Trans on Geoscience and Remote Sensing, 2016, 54(3):1376-1389
[16] LI W, DU Q. Collaborative representation for hyperspectral anomaly detection[J]. IEEE Trans on Geoscience and Remote Sensing, 2015, 53(3):1463-1474
[17] LI W, WU G, DU Q. Transferred deep learning for anomaly detection in hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5):597-601
[18] EFROS A, LEUNG T, et al. Texture synthesis by non-parametric sampling[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999:1033-1038