论文:2021,Vol:39,Issue(2):334-340
引用本文:
刘维伟, 吕谦, 雷力明, 侯彦昊, 石磊. 增材制造预旋喷嘴表面高质量光整技术研究[J]. 西北工业大学学报
LIU Weiwei, LYU Qian, LEI Liming, HOU Yanhao, SHI Lei. Study on high quality surface finishing technology of pre-spinning nozzle in additive manufacturing[J]. Northwestern polytechnical university

增材制造预旋喷嘴表面高质量光整技术研究
刘维伟1, 吕谦1, 雷力明2, 侯彦昊1, 石磊2
1. 西北工业大学 机电学院, 陕西 西安 710072;
2. 中国航发上海商用航空发动机制造有限责任公司, 上海 200241
摘要:
通过进行增材制造高温合金预旋喷嘴内腔磨料流动仿真研究,优化了磨粒流抛光专用工装,开展了增材制造预旋喷嘴典型结构试验件内腔磨粒流表面光整工艺研究。通过抛光前后表面形貌对比,认为磨粒流对增材制造零件表面粘粉效应、球化效应、阶梯效应、挂渣现象以及残留支撑均有较好的去除作用,但是对基体表面凹坑内的光整效果有限,抛光后零件表面粗糙度由Ra3.139 7 μm降至Ra0.580 5 μm,叶片表面粗糙度由Ra4.847 3 μm降至Ra0.360 6 μm。通过极差分析,发现工艺参数对零件表面粗糙度的影响效果强度依次为加工时间、加工压力、磨粒粒径。
关键词:    增材制造    预旋喷嘴    磨粒流    数值模拟    表面质量   
Study on high quality surface finishing technology of pre-spinning nozzle in additive manufacturing
LIU Weiwei1, LYU Qian1, LEI Liming2, HOU Yanhao1, SHI Lei2
1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. AECC Shanghai Commercial Aviation Engine Manufacturing Co., Ltd, Shanghai 200241, China
Abstract:
Through the simulation of abrasive flow in the inner cavity of the superalloy pre-spinning nozzle made by additive manufacturing,the special abrasive polishing tool is optimized and the surface polishing technology of the inner cavity of typical structure test pieceis studied. Through comparison of the surface morphology before and after polishing, it can be concluded that the abrasive flow has a considerable removal effect on the powder sticking effect, spheroidizing effect, step effect, slag hanging phenomenon and residual support on the surface of parts, but it has a limited effect on the surface pit of the substrate. After polishing, the surface roughness of the inner cavity of parts decreasea from Ra 3.1397 μm to Ra 0.5805 μm, and the surface roughness of blade position decreases from Ra 4.8473 μm to Ra 0.3606 μm. Through the range analysis, it is found that the effect intensity of the processing parameters on the surface roughness of the parts is in order of the processing time, processing pressure and abrasive particle size.
Key words:    additive manufacturing    pre-spinning nozzle    abrasive flow    numerical simulation    surface quality   
收稿日期: 2020-08-04     修回日期:
DOI: 10.1051/jnwpu/20213920334
通讯作者:     Email:
作者简介: 刘维伟(1970-),西北工业大学副教授,主要从事复杂曲面零件的高效精密加工技术研究。
相关功能
PDF(3581KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘维伟  在本刊中的所有文章
吕谦  在本刊中的所有文章
雷力明  在本刊中的所有文章
侯彦昊  在本刊中的所有文章
石磊  在本刊中的所有文章

参考文献:
[1] 王璐. 某型驻涡燃烧室冷却技术研究[D]. 南京:南京航空航天大学,2012 WANG Lu. Research on cooling technology of a trapped vortex combustor[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese)
[2] 谭超. 飞秒激光加工金属微孔工艺及表面质量研究[D]. 长沙:中南大学, 2014 TAN Chao. Research on processing technology and surface quality of metal micro-holes machined by femtosecond laser[D]. Changsha:Central South University,2014(in Chinese)
[3] 杨强, 鲁中良, 黄福享, 等. 激光增材制造技术的研究现状及发展趋势[J].航空制造技术,2016(12):26-31 YANG Qiang, LU Zhongliang, HUANG Fuxiang,et al. Research status and development trend of laser additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 2016(12):26-31(in Chinese)
[4] 高航, 彭灿, 王宣平. 航空增材制造复杂结构件表面光整加工技术研究及进展[J]. 航空制造技术,2019,62(9):14-22 GAO Hang, PENG Can, WANG Xuanping. Research and development of surface finishing technology for complex structural parts made of aviation additive[J]. Aeronautical Manufacturing Technology, 2019,62(9):14-22(in Chinese)
[5] 张建超, 王锁芳. 径向预旋系统温降与流阻特性的数值研究[J]. 航空动力学报,2013,28(10):2284-2291 ZHANG Jianchao,WANG Suofang. Numerical study on characteristics of temperature reduction and flow loss in radial pre-swirl system[J]. Journal of Aerospace Power, 2013,28(10):2284-2291(in Chinese)
[6] 李涛. 基于非结构网格的气冷涡轮气热弹耦合数值计算[D]. 哈尔滨:哈尔滨工业大学,2014 LI Tao. Thermal-flow elastic coupling numerical simulations based on unstructured mesh in air-coooled turbine[D]. Harbin:Harbin Institute of Technology,2014(in Chinese)
[7] 刘睿诚. 激光选区熔化成型零件表面粗糙度研究及在免组装机构中的应用[D]. 广州:华南理工大学,2014 LIU Ruicheng. The study on surface roughness of metal parts fabricated by selective laser melting and the application on non-assembly mechanisms[D]. Guangzhou:South China University of Technology, 2014(in Chinese)
[8] SADEGH R. Evaluation of analytical modeling for improvement of surface roughness of FDM test part using measurement results[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(5):823-829(in Chinese)
[9] BOULAND C, URLEA V, BEAUBIER K, et al. Abrasive flow machining of laser powder bed-fused parts:numerical modeling and experimental validation[J]. Journal of Materials Processing Tech, 2019, 273:116262
[10] 何艳丽,廖焕文,王禄秀. 商用航空发动机金属增材制造技术及装备应用[J]. 航空制造技术,2014(22):47-51 HE Yanli, LIAO Huanwen, WANG Luxiu. Manufacturing technology and equipment application of metal additive for commercial aeroengine[J]. Aeronautical Manufacturing Technology, 2014(22):47-51(in Chinese)
[11] 杨谦. 增材制造在航空发动机燃烧室中的应用[J]. 航空动力,2018(4):26-29(in Chinese) YANG Qian. Additive Manufacturing for combustors[J]. Aerospace Power, 2018(4):26-29(in Chinese)
[12] SRISHTI J, MIKE C, BRUCE T, et al. Electrochemical polishing of selective laser melted Inconel 718[J]. Procedia Manufacturing, 2019, 34:239-246
[13] 李俊烨,周曾炜,张心明,等. 固体与液体两相磨粒流抛光异形曲面的质量控制因素研究[J]. 兵工学报,2018,39(4):772-779 LI Junye, ZHOU Cengwei, ZHANG Xinming, et al. Research on the quality control factors of special-shaped surface in solid-liquid two-phase abrasive flow polishing[J]. Acta Armamentarii, 2018,39(4):772-779(in Chinese)