论文:2021,Vol:39,Issue(1):216-223
引用本文:
李宗宣, 卜仁祥, 章沪淦. 结合改进RBF与虚拟圆弧的船舶路径滑模控制[J]. 西北工业大学学报
LI Zongxuan, BU Renxiang, ZHANG Hugan. Path following of ship based on sliding mode control with improved RBF neural network and virtual circle[J]. Northwestern polytechnical university

结合改进RBF与虚拟圆弧的船舶路径滑模控制
李宗宣, 卜仁祥, 章沪淦
大连海事大学 航海学院, 辽宁 大连 116026
摘要:
为解决欠驱动船舶路径跟踪中存在速度状态不易获取﹑外界环境干扰及内部模型不确定等问题,提出结合速度观测的径向基函数(RBF)神经网络滑模控制算法。并为改进RBF对未知项的逼近能力,引入反正切函数对RBF权值进行更新。为处理船舶速度不可测问题,基于双曲正切函数建立了非线性观测器。此外,为避免船在转向点处容易产生超调的情况,提出在路径衔接处根据转向角大小而设计可变圆弧的虚拟路径,以提高路径跟踪性能。最终对比仿真表明,在不需获取速度值的情况下,控制器仍能使船在时变干扰下准确地跟踪上参考路径,并提高了路径跟踪性能和RBF逼近性能,验证了所提方法的有效性。
关键词:    船舶路径跟踪    滑模控制    径向基函数神经网络    非线性观测器   
Path following of ship based on sliding mode control with improved RBF neural network and virtual circle
LI Zongxuan, BU Renxiang, ZHANG Hugan
School of Navigation College, Dalian Maritime University, Dalian 116026, China
Abstract:
To address the unmeasured velocity,external disturbance and internal model uncertainty for following the path of an under-actuated ship,the paper presents a sliding mode control method based on the radial basis function(RBF) neural network and the velocity observer. To enhance the RBF performance of approximating the unknown, an arc tangent function was exploited in the RBF neural network to update its weight values. Then, the nonlinear observer was built via the hyperbolic tangent function to deal with the unmeasured velocity of the ship. Furthermore,in order to avoid overshoots when the ship is moving to its way points,the virtual paths of a variable circle based on the turning angle were designed at the joints of the path of the ship to enhance its path following capability. Finally, the simulation results show that the sliding mode controller designed in the paper can force the ship to follow accurately the reference path in case of time-varying disturbances without measured velocity and enhance the path following performance of the ship and the accuracy of the RBF neural network,thus demonstrating its effectiveness.
Key words:    path following    sliding mode control    radial basis function neural network    nonlinear observer   
收稿日期: 2020-06-06     修回日期:
DOI: 10.1051/jnwpu/20213910216
基金项目: 国家自然科学基金(51939001,61976033,61751202)与中央高校基本科研基金(3132019345,3132020137)资助
通讯作者: 卜仁祥(1973-),大连海事大学副教授,主要从事非线性滑模控制研究。e-mail:burenxiang@dcmu.edu.cn     Email:burenxiang@dcmu.edu.cn
作者简介: 李宗宣(1996-),大连海事大学硕士研究生,主要从事滑模控制及船舶运动控制研究。
相关功能
PDF(1974KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李宗宣  在本刊中的所有文章
卜仁祥  在本刊中的所有文章
章沪淦  在本刊中的所有文章

参考文献:
[1] WANG J Q, ZOU Z J, WANG T. High-gain extended state observer based adaptive sliding mode path following control for an underactuated vessel sailing in restricted waters[J]. Applied Sciences, 2019, 9(1102): 1-21
[2] LEKKAS A M, FOSSEN T I. Integral LOS path following for curved paths based on a monotone cubic hermite spline parametrization[J]. IEEE Trans on Control Systems Technology, 2014, 22(6): 2287-2301
[3] PADIDEH R, KHOSHNAM S, ABBAS C. Output feedback look-ahead position control of electrically driven fast surface vessels[J]. Automatika, 2016, 57(4): 968-981
[4] 沈智鹏, 毕艳楠, 郭坦坦, 等. 带非线性观测器的欠驱动船舶自适应动态面输出反馈轨迹跟踪控制[J]. 系统工程与电子技术, 2019, 41(2): 409-416 SHEN Zhipeng, BI Yannan, GUO Tantan, et al. Adaptive dynamic surface output feedback trajectory tracking control for underactuated ships with nonlinear observer[J]. Systems Engineering and Electronics, 2019, 41(2): 409-416(in Chinese)
[5] 丁福光, 马燕芹, 王元慧, 等. 基于状态观测器的多艘船舶鲁棒同步控制[J]. 哈尔滨工程大学学报, 2015, 36(6): 789-794 DING Fuguang, MA Yanqin, WANG Yuanhui, et al. Robust synchronization control of multiple vessels with state observer[J]. Journal of Harbin Engineering University, 2015, 36(6): 789-794(in Chinese)
[6] 沈智鹏, 张晓玲, 张宁, 等. 基于神经网络观测器的船舶轨迹跟踪递归滑模动态面输出反馈控制[J]. 控制理论与应用, 2018, 35(8): 1092-1100 SHEN Zhipeng, ZHANG Xiaoling, ZHANG Ning, et al. Recursive sliding mode dynamic surface output feedback control for ship trajectory tracking based on neural network observer[J]. Control Theory & Applications, 2018, 35(8): 1092-1100(in Chinese)
[7] WANG Y H, TONG H Y WANG C L. High-gain observer-based line-of-sight guidance for adaptive neural path following control of underactuated marine surface vessels[J]. IEEE Access, 2019, 7: 19258-19265
[8] FAN Y S, HUANG H Y, TAN Y Y. Robust adaptive path following control of an unmanned surface vessel subject to input saturation and uncertainties[J]. Applied Sciences,2019, 9(1815): 1-18
[9] LIU Z Q. Pre-filtered backstepping control for underactuated ship path following[J]. Polish Maritime Research, 2019, 26(2): 68-75
[10] VO D D, PHAM V A, NGUYEN D A. Design an adaptive autopilot for an unmanned surface vessel[C]//Proceeding of the 4th International Conference on Green Technology and Sustainable Development, Ho Chi Minh City, Vietnam, 2018: 323-328
[11] HERMAN P, ADAMSKI W. Non-adaptive velocity tracking controller for a class of vehicles[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2017, 65(4): 459-468
[12] CHEN X, LIU Z, ZHANG J Q, et al. Adaptive sliding-mode path following control system of the underactuated USV under the influence of ocean currents[J]. Journal of Systems Engineering and Electronics, 2018, 29(6): 1271-1283
[13] LIU Y, BU R X, GAO X R. Ship trajectory tracking control system design based on sliding model control algorithm[J]. Polish Maritime Research,2018,25(3): 26-34
[14] 沈智鹏, 代昌盛, 张宁. 欠驱动船舶自适应迭代滑模轨迹跟踪控制[J]. 交通运输工程学报, 2017, 17(6): 125-134 SHEN Zhipeng, DAI Changsheng, ZHANG Ning. Trajectory tracking control of underactuated ship based on adaptive iterative sliding mode[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 125-134(in Chinese)
[15] 沈智鹏, 王茹. 基于DSC和MLP的欠驱动船舶自适应滑模轨迹跟踪控制[J]. 系统工程与电子技术, 2018, 40(3): 643-651 SHEN Zhipeng, WANG Ru. Adaptive sliding mode trajectory tracking control of underactuated ship based on DSC-MLP[J]. Systems Engineering and Electronics, 2018, 40(3): 643-651(in Chinese)
[16] 张贺, 姚杰, 隋江华, 等. 基于DSC的欠驱动船舶路径跟踪神经滑模控制[J]. 船舶工程, 2019, 41(10): 85-91 ZHANG He, YAO Jie, SUI Jianghua, et al. Neural sliding mode path following control for underctuated ship based on DSC[J]. Ship Engineering, 2019, 41(10): 85-91(in Chinese)
[17] MU D D, WANG G F, FAN Y S, et al. Adaptive trajectory tracking control for underactuated unmanned surface vehicle subject to unknown dynamics and time-varing disturbances[J]. Applied Sciences, 2018, 8(547): 1-16
[18] YU Y L, GUO C, YU H M. Finite-time predictor line-of-sight-based adaptive neural network path following for unmanned surface vessels with unknown dynamics and input saturation[J]. International Journal of Advanced Robotic System, 2018, 15(6): 1-14
[19] QIU B B, WANG G F, FAN Y S, et al. Adaptive sliding mode trajectory tracking control for unmanned surface vehicle with modeling uncertainties and input saturation[J]. Applied Sciences, 2019, 9(1240): 1-18
[20] 李荣辉, 曹峻海, 李铁山. 波浪作用下船舶航向自抗扰控制设计及参数配置[J]. 控制理论与应用, 2018, 35(11): 1601-1609 LI Ronghui, CAO Junhai, LI Tieshan. Active disturbance rejection control design and parameters configuration for ship steering with wave disturbance[J]. Control Theory & Applications, 2018, 35(11): 1601-1609(in Chinese)
[21] LIU L, WANG D, PENG Z H, et al. Cooperative path following ring-networked under-actuated autonomous surface vehicles: algorithms and experimental results[J]. IEEE Trans on Cybernetics, 2020, 50(4): 1519-1529
[22] LIU C G, ZHENG H R, NEGENBORN R, et al. Adaptive predictive path following control based on least squares support vector machines for underactuated autonomous vessels[J]. Asian Journal of Control, 2019, 2208: 1-17
[23] NAGAI T, WATANABE R. Applying position prediction model for path following of ship on curved path[C]//Proceeding of the IEEE Region 10 Conference, Singapore, 2016: 22-25
[24] WANG S S, WANG L J, QIAO Z X. Optimal Robust control of path following and rudder roll reduction for a container ship in heavy waves[J]. Applied Sciences, 2018, 8(1631): 1-19
[25] LI Z X, LI R H, BU R X. Path following of under-actuated ships based on model predictive control with state observer[J]. Journal of Marine Science and Technology, 2020(4): 1-11