论文:2021,Vol:39,Issue(1):182-188
引用本文:
王云, 范玮, 李红宾. 爆震管结构对脉冲爆震发动机性能影响研究[J]. 西北工业大学学报
WANG Yun, FAN Wei, LI Hongbin. Study on effect of geometry on performance of pulse detonation rocket engines[J]. Northwestern polytechnical university

爆震管结构对脉冲爆震发动机性能影响研究
王云, 范玮, 李红宾
西北工业大学 动力与能源学院, 陕西 西安 710129
摘要:
为了探究爆震管结构对无阀自适应式脉冲爆震火箭发动机性能的影响,采用汽油为燃料,富氧空气为氧化剂,对采用不同结构掺混段和障碍物的脉冲爆震火箭发动机进行了工作频率为20 Hz的无阀式多循环实验研究。研究结果表明,渐扩结构掺混段的使用可以缩短PDRE的DDT距离和DDT时间;螺旋凹槽和环形凹槽对DDT过程的加速效果较差;渐扩结构掺混段相较于突扩结构的掺混段有4.2%~7.2%的混合物比冲损失;使用突扩结构掺混段和Shchelkin螺旋的PDRE的混合物比冲最大,约为116.4 s。
关键词:    脉冲爆震火箭发动机    无阀    结构    DDT    推进性能   
Study on effect of geometry on performance of pulse detonation rocket engines
WANG Yun, FAN Wei, LI Hongbin
School of Power and Energy, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
In order to investigate the effect of the geometry on the performance of pulse detonation rocket engines under valveless self-adaptive working mode, the multi-cycle experiment was carried out on the pulse detonation rocket engines with different mixing sections and obstacles, while the operating frequency was 20 Hz. Gasoline was utilized as fuel, and oxygen-enriched air as oxidizer. Experimental results indicate that the DDT distance and DDT time of PDRE can be shortened by using the mixing section of gradual-expansion structure. The effect of the spiraling grooves and annular grooves on the DDT process is weak. The mixture-based specific impulse of the mixing section with gradual-expansion structure is 4.2%-7.2% lower than that of the mixing section with sudden-expansion structure. The mixture-based specific impulse of PDRE with sudden-expansion structure and Shchelkin spirals is the largest, about 116.4 s.
Key words:    pulse detonation rocket engines    valveless    geometry    DDT    propulsive performance   
收稿日期: 2020-05-19     修回日期:
DOI: 10.1051/jnwpu/20213910182
基金项目: 国家自然科学基金(51876179)资助
通讯作者:     Email:
作者简介: 王云(1991-),西北工业大学博士研究生,主要从事脉冲爆震发动机研究。
相关功能
PDF(2471KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王云  在本刊中的所有文章
范玮  在本刊中的所有文章
李红宾  在本刊中的所有文章

参考文献:
[1] 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安: 西北工业大学出版社, 2005 YAN Chuanjun, FAN Wei. Pulse detonation engine principle and key issues of technology[M]. Xi'an: Northwestern Polytechnical University Press, 2005(in Chinese)
[2] ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion: challenges, current status, and future perspective[J]. Progress in Energy and Combustion Science, 2004, 30: 545-672
[3] WOLANSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34: 125-158
[4] WANG K, FAN W, LU W, et al. Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process[J]. Energy, 2014, 71(1): 605-614
[5] LU W, FAN W, WANG K, et al. Operation of a liquid-fueled and valveless pulse detonation rocket engine at high frequency[J]. Proceedings of the Combustion Institute, 2017, 36: 2657-2644
[6] WANG Z W, ZHANG T, CHEN X G, et al. Investigation of hot jet effect on detonation initiation characteristic[J]. Combustion Science and Technology, 2017, 189(3): 498-519
[7] COATES A M, MATHIAS D L, CANTWELL B J. Numerical investigation of the effect of obstacle shape on deflagration to detonation transition in a hydrogen-air mixture[J]. Combustion and Flame, 2019, 209: 278-290
[8] ZHANG Q B, WANG K, DONG R X, et al. Experimental research on propulsive performance of the pulse detonation rocket engine with a fluidic nozzle[J]. Energy, 2019, 166: 1267-1275
[9] CICCARELLI G, FOWLER C J, BARDON M. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube[J]. Shock Wave, 2005, 14(3): 161-166
[10] GAMEZO V N, OGAWA T, ORAN E S. Flame Acceleration and DDT in channels with obstacles: effect of obstacle spacing[J]. Combustion and Flame, 2008, 155: 302-315
[11] GAGNON N E, ATTIA M. The Effect of axial spacing of constant and variable blockage on the deflagration to detonation transition in a pulse detonation engine[C]//Proceedings of 52nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2016
[12] GOODWIN G B, HOUIM R W, ORAN E S. Effect of decreasing blockage ratio on DDT in small channels with obstaces[J]. Combustion and Flame, 2016, 173: 16-26
[13] LI J L, FAN W, YAN C J, et al. Performance enhancement of a pulse detonation rocket engine[J]. Proceedings of the Combustion Institute, 2011, 33: 2243-2254
[14] BROPHY C M, NETZER D W. Effects of iginition characteristics and geometry on the performance of a JP-10/O2 fueled pulse detonation engine[C]//Proceedings of 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1999
[15] 蒋弢, 翁春生. 文氏管对脉冲爆轰火箭发动机工作过程影响实验研究[J]. 南京理工大学学报, 2014, 38(2): 241-245 JIANG Tao, WEN Chunsheng. Experimental study on venturi effect on working process of pulse detonation rocket engine[J]. Journal of Nanjing University of Science and Technology, 2014, 38(2): 241-245(in Chinese)
[16] COOPER M, JACKSON S, AUSTIN J, et al. Direct experimental impulse measurements for detonations and deflagrations[J]. Journal of Propulsion and Power, 2002, 18(5): 1033-1041
[17] WINTENBERGER E, AUSTIN J M, COOPER M, et al. Analytical model for the impulse of single-cycle pulse detonation tube[J]. Journal of Propulsion and Power, 2003, 19(1): 22-38
[18] WANG Z W, LIANG Z J, ZHANG Y, et al. Direct-connected experimental investigation on a pulse detonation engine[J]. Journal of Aerospace Engineering, 2017, 231(7): 1338-1246
[19] LI Q, KELLENBERGER M, CICCARELLI G. Geometric influence on the propagation of the Quasi-detonation in a stoichiometric H2-O2 mixture[J]. Fuel, 2020, 269: 117396
[20] ZHANG B, LIU H, LI Y. The Effect of instability of detonation on the propagation modes near the limits in typical combustible mixtures[J]. Fuel, 2019, 253: 305-310
[21] WANG K, FAN W, LU W, et al. Propulsive performance of a pulse detonation rocket engine without the purge process[J]. Energy, 2015, 79: 228-234
[22] LI J, LAI W H, CHUNG K, et al. Uncertainty analysis of deflagration-to-detonation run-up distance[J]. Shock Wave, 2005, 14(5/6): 413-420