论文:2021,Vol:39,Issue(1):148-158
引用本文:
缪佶, 龚春林, 李春娜. 基于CFD收敛提前终止和变复杂度模型的两级气动优化方法[J]. 西北工业大学学报
MIAO Ji, GONG Chunlin, LI Chunna. Two-stage aerodynamic optimization method based on early termination of CFD convergence and variable-fidelity model[J]. Northwestern polytechnical university

基于CFD收敛提前终止和变复杂度模型的两级气动优化方法
缪佶, 龚春林, 李春娜
西北工业大学 航天学院, 陕西 西安 710072
摘要:
高效的气动优化设计方法对于提升小型无人飞行器翼型的气动性能具有重要的价值。针对CFD分析成本较大的问题,提出了基于CFD收敛提前终止和变复杂度模型的两级气动优化方法。在第一级优化中,分别将CFD收敛提前终止和CFD完全收敛的数据作为低、高精度样本建立变复杂度模型。采用多岛遗传算法基于变复杂度模型进行全局优化。第二级优化中,以第一级全局最优解为初值,采用Hooke-Jeeves算法直接基于CFD完全收敛分析进行优化,从而得到局部更精确的解。采用该方法对小型无人飞行器的翼型进行了气动优化设计,并与基于单一精度Kriging代理模型的EGO方法进行了对比。结果表明,文中所提的两级气动优化方法所需的优化耗时更少。
关键词:    变复杂度模型    CFD收敛提前终止    两级气动优化    Kriging代理模型    翼型优化设计   
Two-stage aerodynamic optimization method based on early termination of CFD convergence and variable-fidelity model
MIAO Ji, GONG Chunlin, LI Chunna
School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Efficient aerodynamic design optimization method is of great value for improving the aerodynamic performance of little UAV's airfoil. Using engineering or semi-engineering estimation method to analyze aerodynamic forces in solving aerodynamic optimization problems costs little computational time, but the accuracy cannot be guaranteed. However, CFD method ensuring high accuracy needs much more computational cost, which is unfordable for optimization. Surrogate-based optimization can reduce the number of high-fidelity analyses to increase the optimization efficiency. However, the cost of CFD analyses is still huge for aerodynamic optimization due to multiple design variables, multi-optimal and strong nonlinearities. To solve this problem, a two-stage aerodynamic optimization method based on early termination of CFD convergence and variable-fidelity model is proposed. In the first optimization stage, the solutions by early termination CFD convergence and the convergenced CFD solutions are regarded as low-and high-fidelity data respectively for building variable-fidelity model. Then, the multi-island genetic algorithm is used in the global optimization based on the built variable-fidelity model. The modeling efficiency can be greatly improved due to many cheap low-fidelity data. In the second stage optimization, the global optimum from the first optimization stage is treated as the start of the Hooke-Jeeves algorithm to search locally based on convergenced CFD computations in order to acquire better-optimum. The proposed method is utilized in optimizing the aerodynamic performance of the airfoil of little UAV, and is compared with the EGO method based on single-fidelity Kriging surrogate model. The results show that the present two-level aerodynamic optimization method consumes less time.
Key words:    variable-fidelity model    early termination of CFD convergence    two-stage aerodynamic optimization    Kriging model    airfoil optimization   
收稿日期: 2020-05-12     修回日期:
DOI: 10.1051/jnwpu/20213910148
基金项目: 国家自然科学基金(11502209)资助
通讯作者: 龚春林(1980-),西北工业大学教授,主要从事飞行器总体设计研究。e-mail:leonwood@nwpu.edu.cn     Email:leonwood@nwpu.edu.cn
作者简介: 缪佶(1995-),西北工业大学硕士研究生,主要从事多学科设计优化研究。
相关功能
PDF(2894KB) Free
打印本文
把本文推荐给朋友
作者相关文章
缪佶  在本刊中的所有文章
龚春林  在本刊中的所有文章
李春娜  在本刊中的所有文章

参考文献:
[1] KOCH P N, SIMPSON T W, ALLEN J K, et al. Statistical approximations for multidisciplinary design optimization: the problem of size[J]. Journal of Aircraft, 1999, 36(1): 275-286
[2] HAN Z H, GÖRTZ S. Hierarchical Kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1885-1896
[3] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225 HAN Zhonghua. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225(in Chinese)
[4] PARK J, SANDBERG I W. Universal approximation using radial-basis-function networks[J]. Neural Computation, 1991, 3(2): 246-257
[5] SCHMIT L A, FARSHI B. Some approximation concepts for structural synthesis[J]. AIAA Journal, 1974, 12(5): 692-699
[6] ALEXANDROV N M, LEWIS R M, GUMBERT C R, et al. Optimization with variable-fidelity models applied to wing design[C]//38th Aerospace Sciences Meeting and Exhibit, Reno, NV, 2000
[7] JIANG P, ZHOU Q, SHAO X, et al. A modified blisco method and its combination with variable fidelity metamodel for engineering design[J]. Engineering Computations, 2016, 33(5): 1353-1377
[8] CHANG K J, HAFTKA R T, GILES G L, et al. Sensitivity based scaling for approximating structural response[J]. Journal of Aircraft, 1993, 30(2): 283-288
[9] ALEXANDROV N M, LEWIS R M, GUMBERT C R, et al. Approximation and model management in aerodynamic optimization with variable-fidelity models[J]. Journal of Aircraft, 2001, 38(6): 1093-1101
[10] GANO S E, renaud j e, martin j d, et al. Update strategies for Kriging models used invariable fidelity optimization[J]. Structural and Multidisciplinary Optimization, 2006, 32(4): 287298
[11] LEIFSSON L, KOZIEL S B. Fast low-fidelity wing aerodynamics model for surrogate-based shape optimization[J]. Procedia Computer Science, 2014, 29: 811-820
[12] ZHANG Y, HAN Z H, ZHANG K S. Variable-fidelity expected improvement method for efficient global optimization of expensive functions[J]. Structural and Multidisciplinary Optimization, 2018, 4(58): 1431-1451
[13] SONG C, YANG X, SONG W. Multi-infill strategy for Kriging models used in variable fidelity optimization[J]. Chinese Journal of Aeronautics, 2018, 31(3): 448-456
[14] HAN Z H, XU C Z, ZHANG L. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics, 2019, 33(1): 31-47
[15] LEIFSSON L, KOZIEL S. Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models: a review of recent progress[J]. Joural of Computational Science, 2015, 10: 45-54
[16] MIFSUD M J, MACMANUS D G, SHAW S T. A variable-fidelity aerodynamic model using proper orthogonal decomposition[J]. International Journal for Numerical Methods in Fluids, 2016, 82(10): 646-663
[17] LAURENCEAU J, SAGAUT P. Building efficient response surfaces of aerodynamic functions with kriging and cokriging[J]. AIAA Journal, 2008, 46(2): 498-507
[18] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492
[19] 马洋. 基于代理模型和MOEA/D的飞行器气动外形优化设计研究[D]. 长沙: 国防科学技术大学,2015 MA Yang. Research on the aerodynamic shape optimization of vehicle based on surrogate model and MOEA/D[D]. Changsha: National University of Defense Technology, 2015(in Chinese)
[20] COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE 2822-pressure distributions, and boundary layer and wake measurements[R]. AGARD Report AR 138, 1979
[21] GIUNTA A A, WOJTKIEWICZ S F, ELDRED M S. Overview of modern design of experiments methods for computational simulations[C]//41st AIAA Aerospace Sciences Meeting and Exhibit, 2003
[22] KULFAN B, BUSSOLETTI J. "Fundamental" parameteric geometry representations for aircraft component shapes[C]//11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2006
[23] IULIANO Emiliano. Global optimization of benchmark aerodynamic cases using physics-based surrogate models[J]. Aerospace Science and Technology, 2017, 67: 273-286
[24] FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1): 50-79