论文:2021,Vol:39,Issue(1):126-134
引用本文:
王时雨, 张盛兵, 黄小平, 吕浩. 星载SAR实时成像处理器的片上数据组织及访问策略[J]. 西北工业大学学报
WANG Shiyu, ZHANG Shengbing, HUANG Xiaoping, LYU Hao. On-chip data organization and access strategy for spaceborne SAR real-time imaging processor[J]. Northwestern polytechnical university

星载SAR实时成像处理器的片上数据组织及访问策略
王时雨1, 张盛兵1,2,3, 黄小平1,2, 吕浩1
1. 西北工业大学 计算机学院, 陕西 西安 710072;
2. 嵌入式系统集成教育部工程研究中心, 陕西 西安 710072;
3. 空天地海一体化大数据应用技术国家工程实验室, 陕西 西安 710072
摘要:
星载SAR成像需对大量输入数据进行实时成像处理,且功耗受限,设计高效率异构阵列处理器是满足功耗约束和实时性要求的有效方法,而片上数据组织结构和访问策略是设计的关键。在分析典型的CSA (chirp scaling algorithm) SAR成像算法的基础上,提取了SAR成像的数据流模型。提出了一种跨区域交叉放置和数据排序同步访问的存储策略,通过片上多级数据缓存结构,有效缓解存储带宽问题,支持FFT/IFFT和相位补偿操作的流水处理,确保成像计算高效执行。基于该存储策略的处理器可实现高达115.2 GOPS的吞吐量,采用65 nm技术可实现高达254 GOPS/W的能效。与CPU+GPU加速方案相比,性能/功耗比提高了63.4倍。该结构提高了实时性能,降低系统设计的复杂度,具有良好的可扩展性,可满足不同SAR成像平台的需求。
关键词:    异构阵列    SAR成像    数据排序    交叉放置    高吞吐量    可扩展   
On-chip data organization and access strategy for spaceborne SAR real-time imaging processor
WANG Shiyu1, ZHANG Shengbing1,2,3, HUANG Xiaoping1,2, LYU Hao1
1. School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. Engineering Research Center of Embedded System Integration, Xi'an 710072, China;
3. National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Xi'an 710072, China
Abstract:
Spaceborne SAR(synthetic aperture radar) imaging requires real-time processing of enormous amount of input data with limited power consumption. Designing advanced heterogeneous array processors is an effective way to meet the requirements of power constraints and real-time processing of application systems. To design an efficient SAR imaging processor, the on-chip data organization structure and access strategy are of critical importance. Taking the typical SAR imaging algorithm-chirp scaling algorithm-as the targeted algorithm, this paper analyzes the characteristics of each calculation stage engaged in the SAR imaging process, and extracts the data flow model of SAR imaging, and proposes a storage strategy of cross-region cross-placement and data sorting synchronization execution to ensure FFT/IFFT calculation pipelining parallel operation. The memory wall problem can be alleviated through on-chip multi-level data buffer structure, ensuring the sufficient data providing of the imaging calculation pipeline. Based on this memory organization and access strategy, the SAR imaging pipeline process that effectively supports FFT/IFFT and phase compensation operations is therefore optimized. The processor based on this storage strategy can realize the throughput of up to 115.2 GOPS, and the energy efficiency of up to 254 GOPS/W can be achieved by implementing 65 nm technology. Compared with conventional CPU+GPU acceleration solutions, the performance to power consumption ratio is increased by 63.4 times. The proposed architecture can not only improve the real-time performance, but also reduces the design complexity of the SAR imaging system, which facilitates excellent performance in tailoring and scalability, satisfying the practical needs of different SAR imaging platforms.
Key words:    heterogeneous array    SAR imaging    data sort    cross-placement    high throughput    scalability    on-chip data organization    access strategy   
收稿日期: 2020-06-23     修回日期:
DOI: 10.1051/jnwpu/20213910126
基金项目: 陕西省自然科学基础研究计划(2018JM6117)资助
通讯作者:     Email:
作者简介: 王时雨(1984-),西北工业大学博士研究生,主要从事高性能微处理器架构、VLSI/SOC设计与测试研究。
相关功能
PDF(1915KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王时雨  在本刊中的所有文章
张盛兵  在本刊中的所有文章
黄小平  在本刊中的所有文章
吕浩  在本刊中的所有文章

参考文献:
[1] GIERULL C H, VACHON P W. Foreword to the special issue on multichannel space-based SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 4995-4997
[2] Advanced land observing satellite-2 SAR mission[EB/OL].(2020-01-23)[2020-05-20]. https://directory.eoportal.org/web/eoportal/satellite-missions/a/alos-2
[3] Terra SAR-X add-on for digital elevation measurement[EB/OL].(2017-09-13)[2020-05-20]. https://directory.eoportal.org/web/eoportal/satellite-missions/t/tandem-x(Accessed on 13 September 2017)
[4] YANG Lei, ZHAO Lifan, ZHOU Song, et al. Sparsity-driven SAR imaging for highly maneuvering ground target by the combination of time-frequency analysis and parametric Bayesian learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 4: 1443-1455
[5] RANEY R K, RUNGE H, BAMLER R, et al. Precision SAR processing using chirp scaling[J]. IEEE Trans on Geoscience and Remote Sensing, 1994, 32(4): 786-799
[6] LI G, ZHANG F, MA L, et al. Accelerating SAR imaging using vector extension on multi-core SIMD CPU[C]//Geoscience & Remote Sensing Symposium, 2015
[7] WU Z, LIU Y, ZHANG L, et al. Highly efficient synthetic aperture radar processing system for airborne sensors using CPU+GPU architecture[J]. Journal of Applied Remote Sensing, 2015, 9(1): 097293
[8] PETERNIER A, MERRYMAN BONCORI J P, PASQUALI P. Near-real-time focusing of ENVISAT ASAR stripmap and sentinel-1 TOPS imagery exploiting OpenCL GPGPU technology[J]. Remote Sensing of Environment, 2017, 202: 45-53
[9] LOU Y, CLARK D, MARKS P, et al. Onboard radar processor development for rapid response to natural hazards[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(6): 2770-2776
[10] TANG H Y, LI G J, ZHANG F, et al. A spaceborne SAR on-board processing simulator using mobile GPU[C]//Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 10-15
[11] FAN Z, GUOJUN L, WEI L, et al. Accelerating spaceborne SAR imaging using multiple CPU/GPU deep collaborative computing[J]. Sensors, 2016, 16(4): 494
[12] YANG Zhijun, NIE Xiangfei, XIONG Wenyi, et al. Real time imaging processing of ground-based SAR based on multicore DSP[C]//2017 IEEE International Conference on Imaging Systems and Techniques, 2017: 1-5
[13] BIERENS L, VOLLMULLER B J. On-board payload data processor(OPDP) and its application in advanced multi-mode, multi-spectral and interferometric satellite SAR instruments[C]//Proceedings of the 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 340-343
[14] PFITZNER M, CHOLEWA F, PIRSCH P, et al. FPGA based architecture for real-time SAR processing with integrated motion compensation[C]//Proceedings of the 2013 Asia-Pacific Conference on Synthetic Aperture Radar, Tsukuba, Japan, 2013: 521-524
[15] CHEN Yang, LI Bingyi, LIANG Chen, et al. A spaceborne synthetic aperture radar partial fixed-point imaging system using a field-programmable gate array-application-specific integrated circuit hybrid heterogeneous parallel acceleration technique[J]. Sensors, 2017, 17(7): 134