刘富强, 罗凯, 梁红阁, 黄闯, 耿少航, 董兴杰. 回转体滑水航行流体动力特性研究[J]. 西北工业大学学报
LIU Fuqiang, LUO Kai, LIANG Hongge, HUANG Chuang, GENG Shaohang, DONG Xingjie. Research on hydrodynamic characteristics of cylinder planing[J]. Northwestern polytechnical university

刘富强1, 罗凯1, 梁红阁2, 黄闯1, 耿少航1, 董兴杰3
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 西安庆安电气控制有限责任公司, 陕西 西安 710077;
3. 中国船舶集团有限公司 第705研究所, 陕西 西安 710077
基于STAR-CCM+数值仿真软件,选用SST k-w湍流模型,采用VOF波构建运动体在静水面滑水数值计算模型。通过国外经典文献对构建模型进行校核,数值模拟结果与实验结果吻合性较好,流体动力数值误差均小于5%,在工程误差范围内,模型可用于回转体滑水航行工况的数值模拟计算。对回转体在不同速度、不同淹没深度滑水工况进行数值模拟,研究其流场特性和流体动力特性。结果表明,回转体在静水面滑水过程中,尾部波浪兴起,液体飞溅形成水花,滑水速度越高、淹没深度越深,尾部兴波越明显;回转体在Cv≥8时,流体动力系数几乎不变,其不受速度大小的影响,而在Cv=3时,流体动力系数较高,阻力系数高于高速(Cv≥8)滑水阻力系数20%,升力系数是高速滑水升力系数的3倍,其与回转体在低速滑水过程中表面压力和摩擦力作用分布有关;回转体在不同淹没深度滑水过程中,阻力系数与淹没深度呈线性关系。
关键词:    回转体    滑水    流场特性    流体动力特性    数值仿真   
Research on hydrodynamic characteristics of cylinder planing
LIU Fuqiang1, LUO Kai1, LIANG Hongge2, HUANG Chuang1, GENG Shaohang1, DONG Xingjie3
1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. Xi'an Qing'an Electric Control Co., LTD, Xi'an 710077, China;
3. The 705 Research Institute, China State Shipbuilding Corporation Limited, Xi'an 710077, China
This paper selects SST k-w turbulence model and VOF wave to construct a numerical calculation model of moving body planning on a flat free surface based on STAR-CCM+ numerical simulation software. The construction model is checked through foreign classic literature, and the numerical simulation results are in good agreement with the experimental results. The hydrodynamic numerical errors are less than 5%, which is within the engineering error range. The model can be used for the numerical simulation of the planning cylinder. In this paper, it is used to simulate the planing process of cylinder with different speeds and different submerged depths, and the flow field characteristics and hydrodynamic characteristics in the planing process are obtained. The results show that waves appear at the tail and the tail liquid splashes to form a water splash during the planing process of the cylinder on a flat surface. The higher the speed of the planning cylinder is, and the deeper the submersion depth, the more pronounced waves at the tail. When the cylinder has a Fr number Cv≥8, the hydrodynamic force of the cylinder is almost unchanged, and it is not affected by the speed. But when Cv=3, the hydrodynamic characteristic coefficient is higher. The drag coefficient is 20% higher than that in the high-speed (Cv≥8) planing process. The lift coefficient is 3 times of high-speed planing lift coefficient. It is related to the surface pressure and frictional force distribution of cylinder during the low-speed planing. There is a linear relationship between the drag coefficient and the submerged depth during the cylinder planing at different submerged depths.
Key words:    moving cylinder    planing    flow field characteristics    hydrodynamic characteristics    numerical simulation   
收稿日期: 2020-03-30     修回日期:
DOI: 10.1051/jnwpu/20213910101
基金项目: 国家自然科学基金(51909218)、中国博士后科学基金(2019M653747)与中央高校基本科研业务费专项资金(3102019HHZY030010)资助
通讯作者: 黄闯(1989-),西北工业大学助理研究员,主要从事水下超空泡航行器研究。e-mail:huangchuang@nwpu.edu.cn     Email:huangchuang@nwpu.edu.cn
作者简介: 刘富强(1995-),西北工业大学硕士研究生,主要从事超空泡射弹及航行器总体设计研究。
PDF(2745KB) Free
刘富强  在本刊中的所有文章
罗凯  在本刊中的所有文章
梁红阁  在本刊中的所有文章
黄闯  在本刊中的所有文章
耿少航  在本刊中的所有文章
董兴杰  在本刊中的所有文章

[1] 茹呈瑶. 现代鱼雷、水雷技术发展研究[J]. 舰船科学技术, 2003, 25(4): 42-43 RU Chengyao. Modern torpedo and mine technology research[J]. Ship Science and Technology, 2003, 25(4): 42-43(in Chinese)
[2] 张宝华, 杜选民. 水面舰艇鱼雷防御系统综述[J]. 船舶工程, 2003, 25(4): 17-19 ZHANG Baohua, DU Xuanmin. A review of surface warship torpedo defence system[J]. Ship Engineering, 2003, 25(4):17-19(in Chinese)
[3] 崔绪生. 国外鱼雷技术进展综述[J]. 鱼雷技术, 2003, 11(1): 6-11 CUI Xusheng. A summary of progress in torpedo technology over the world[J]. Torpedo Technology, 2003, 11(1): 6-11(in Chinese)
[4] 樊会涛, 崔颢, 天光. 空空导弹70年发展综述[J]. 航空兵器, 2016, 291(1): 7-16 FAN Huitao, CUI Hao, TIAN Guang. A review on the 70-year development of air-to-air missiles[J]. Aero Weaponry, 2016, 291(1): 7-16(in Chinese)
[5] 徐国亮, 张逊, 王勇. 高速机动反舰导弹防御技术[J]. 指挥控制与仿真, 2011(1): 7-11 XU Guoliang, ZHANG Xun, WANG Yong. Analysis of the high speed and high maneuvering antiship missiles defense system[J]. Command Control and Simulation, 2011(1): 7-11(in Chinese)
[6] 张考. "飞鱼"一类导弹隐身突防性能的分析[J]. 航空学报, 1988, 9(6): 217-225 ZHANG Kao. Stealthy penetrating performance analysis of the "exocetlike" missiles[J]. Acta Aeronautica et Astronautica Sinica, 1998, 9(6): 217-225(in Chinese)
[7] 关皓, 梅华, 闻斌, 等. 复杂海况下飞行器掠海飞行击水概率的模拟研究[J]. 海洋预报, 2015(4): 97-105 GUAN Hao, MEI Hua, WEN Bin, et al. A simulation study of ditching probability for sea-skimming flight on complicated sea surface statue[J]. Marine Forecasts, 2015(4): 97-105(in Chinese)
[8] MOCTAR O E, SHIQUNOV V, ZORN T. Duisburg test case: post-panamax container ship for benchmarking[J]. Ship Technology Research, 2012, 59(3): 50-64
[9] 张明霞, 韩兵兵, 卢鹏程, 等. 基于STAR-CCM+的小水线面三体船阻力数值仿真[J]. 中国舰船研究, 2018, 75(4): 81-87 ZHANG Mingxia, HAN Bingbing, LU Pengcheng, et al. Numerical simulation for resistance of trimaran small waterplane area center hull based on STAR-CCM+[J]. Chinese Journal of Ship Research, 2018, 75(4): 81-87(in Chinese)
[10] DE MARCO A, MANCINI S, MIRANDA S, et al. Experimental and numerical hydrodynamic analysis of a stepped planing hull[J]. Applied Ocean Research, 2017, 64: 135-154
[11] AMROMIN E. Analysis of interaction between ship bottom air cavity and boundary layer[J]. Applied Ocean Research, 2016, 59: 451-458
[12] TIMOTHY Y, MICHAEL M, LEN I, et al. Investigation of cylinder planing on a flat free surface[C]//The 11th International Conference on Fast Sea Transportation Fast, Honolulu, Hawaii, USA, 2011
[13] ROBERT L W, ROBERT W E. Forces on cylinders planing on flat and curved surfaces in cavitating and noncavitating flow[R]. No.E-735
[14] VLADIMIR M, VIKTOR K, VLADIMIR S, et al. Experimental study of planing motion of a cylinder along the nearly axisymmetric supercavity surface[C]//The10th International Symposium on Cavitation, Baltimore, Maryland, USA, 2018
[15] 何春涛, 王聪, 闵景新, 等. 回转体匀速垂直入水早期空泡数值模拟研究[J]. 工程力学, 2012, 29(4): 237-243 HE Chuntao, WANG Cong, MIN Jingxin, et al. Numerical simulation of early air-cavity of cylinder cone with vertical water-entry[J]. Engineering Mechanics, 2012, 29(4): 237-243(in Chinese)
[16] 孙凯, 党建军, 郝维敏, 等. 回转体超音速入水冲击数值仿真[J]. 鱼雷技术, 2015, 23(1): 2-6 SUN Kai, DANG Jianjun, HAO Weimin, et al. Numerical simulation on vertical water entry impact of axisymmetric body at supersonic speed[J]. Torpedo Technology, 2015, 23(1): 2-6(in Chinese)
[17] 张新彬. 基于表面张力的仿水黾机器人研究[D]. 哈尔滨: 哈尔滨工业大学, 2016 ZHANG Xinbin. Surface tension-driven biologically inspired water strider robot[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese)
[18] ROOHI E, PENDAR M, RAHIMI A. Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models[J]. Applied Mathematical Modelling, 2016, 40(1): 542-564
[19] 黄闯. 跨声速超空泡射弹的弹道特性研究[D]. 西安: 西北工业大学, 2017 HUANG Chuang. Research of trajectory characteristics of supersonic-supercavitating projectiles[D]. Xi'an: Northwestern Polytechnical University, 2017(in Chinese)
[20] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605
[21] SCHNERR G H, SAUER J. Physical and numerical modeling of unsteady cavitation dynamics[C]//The 4th International Conference on Multiphase Flow, New Orleans, USA, 2001
[22] 魏海鹏, 符松. 不同多相流模型在航行体出水流场数值模拟中的应用[J]. 振动与冲击, 2015, 34(4): 48-52 WEI Haipeng, FU Song. Multiphase models for flow field numerical simulation of a vehicle rising from water[J]. Journal of Vibration and Shock, 2015, 34(4):48-52(in Chinese)
[23] WEISS J M, SMITH W A. Preconditioning applied to variable and constant density flows[J]. AIAA Journal, 1995, 33(11): 2050-2057
[24] LOTFI P, ASHRAFIZAADEH M, ESFAHAN R K. Numerical investigation of a stepped planing hull in calm water[J]. Ocean Engineering, 2015, 94: 103-110