论文:2021,Vol:39,Issue(1):27-36
引用本文:
马一元, 张炜, 张星雨, 张晓斌, 马跃龙, 郭占鹏. 分布式电推进无人机总体参数设计方法研究[J]. 西北工业大学学报
MA Yiyuan, ZHANG Wei, ZHANG Xingyu, ZHANG Xiaobin, MA Yuelong, GUO Zhanpeng. Primary parameters design method for distributed electric propulsion unmanned aerial vehicle[J]. Northwestern polytechnical university

分布式电推进无人机总体参数设计方法研究
马一元1, 张炜1,3, 张星雨1,3, 张晓斌2,3, 马跃龙1, 郭占鹏1
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工业大学 自动化学院, 陕西 西安 710129;
3. 西北工业大学 飞机电推进技术工业和信息化部重点实验室, 陕西 西安 710072
摘要:
分布式电推进动力技术为无人机的设计带来了新的思路,例如提高气动效率和推进效率以及新概念垂直/短距起降构型等。然而和常规无人机相比,分布式电推进无人机的动力系统更为复杂,这为分布式电推进无人机的设计带来了难度和挑战。研究了考虑气动/推进耦合特性的分布式电推进无人机总体参数设计方法和流程。以一架分布式电推进短距起降无人机为算例进行了概念设计和总体参数设计,并对设计参数对起飞质量和续航性能的影响进行了分析,最后通过原理样机的飞行实验对所建立的设计方法的有效性进行了验证。结果表明,分布式电推进动力系统在起飞质量中的占比超过20%,动力系统中的涵道风扇效率、电机功率系数、电子调速器功率系数和供电线电阻率是影响无人机性能最显著的设计参数,随着技术水平的提升,起飞质量有望降低20%以上,续航性能有望提升3倍以上。
关键词:    分布式电推进无人机    总体参数    起飞质量    续航性能    设计参数影响    方法和流程    飞行实验   
Primary parameters design method for distributed electric propulsion unmanned aerial vehicle
MA Yiyuan1, ZHANG Wei1,3, ZHANG Xingyu1,3, ZHANG Xiaobin2,3, MA Yuelong1, GUO Zhanpeng1
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. School of Automation, Northwestern Polytechnical University, Xi'an 710129, China;
3. Key Laboratory of Aircraft Electric Propulsion Technology, Ministry of Industry and Information Technology of China, Xi'an 710072, China
Abstract:
Distributed electric propulsion technology brings new ideas to the design of unmanned aerial vehicle(UAV), such as improving aerodynamic efficiency and propulsive efficiency, and new concept of vertical/short takeoff and landing configurations. However, compared with conventional UAV, the propulsion system of distributed electric propulsion UAV is more complex, which brings difficulties and challenges to the design of distributed electric propulsion UAV. Based on its special aerodynamic/propulsive coupling characteristics, this paper studies the design method and process of primary parameters of distributed electric propulsion UAV. A short takeoff and landing UAV with distributed electric propulsion system is taken as an example for the conceptual design and primary parameter design, and the influence of design parameters on the takeoff mass and endurance is analyzed. Finally, the validity of the established design method is verified by the flight test of the prototype. Results indicate that the distributed electric propulsion system accounts for more than 20% of the takeoff mass; the electric ducted fan efficiency, mass specific power of the motor, mass specific power of the electronic speed controller and the resistivity of power wires are the most significant design parameters that affect the performance of the UAV; with the improvement of technologies, the takeoff mass is expected to be reduced by more than 20%, and the endurance is expected to be increased by more than three times.
Key words:    distributed electric propulsion UAV    primary parameters    takeoff mass    endurance performance    effect of design parameters    method and process    flight test   
收稿日期: 2020-06-13     修回日期:
DOI: 10.1051/jnwpu/20213910027
基金项目: 西北工业大学新兴交叉学科方面项目专项资金(19SHO30401)资助
通讯作者:     Email:
作者简介: 马一元(1994-),西北工业大学硕士研究生,主要从事飞行器设计和优化研究。
相关功能
PDF(2054KB) Free
打印本文
把本文推荐给朋友
作者相关文章
马一元  在本刊中的所有文章
张炜  在本刊中的所有文章
张星雨  在本刊中的所有文章
张晓斌  在本刊中的所有文章
马跃龙  在本刊中的所有文章
郭占鹏  在本刊中的所有文章

参考文献:
[1] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1): 46-62 KONG Xianghao, ZHANG Zhuoran, LU Jiawei, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 46-62(in Chinese)
[2] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 62-73 HUANG Jun, YANG Fengtian. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 62-73(in Chinese)
[3] GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion: a review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5): 369-391
[4] KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium, 2018: 4998
[5] PIEPER K, PERRY A, ANSELL P, et al. Design and development of a dynamically, scaled distributed electric propulsion aircraft testbed[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium, 2018: 4996
[6] DE VRIES R, BROWN M, VOS R. Preliminary sizing method for hybrid-electric distributed-propulsion aircraft[J]. Journal of Aircraft, 2019, 56(6): 2172-2188
[7] HOOGREEF M, VOS R, DE VRIES R, et al. Conceptual assessment of hybrid electric aircraft with distributed propulsion and boosted turbofans[C]//AIAA Scitech 2019 Forum, 2019: 1807
[8] FINGER D F, BRAUN C, BIL C. An initial sizing methodology for hybrid-electric light air-craft[C]//2018 Aviation Technology, Integration, and Operations Conference, 2018: 4229
[9] WANG S, ECONOMOU J T, TSOURDOS A. Design of a distributed hybrid electric propulsion system for a light aircraft based on genetic algorithm[C]//AIAA Propulsion and Energy 2019 Forum, 2019: 4305
[10] WANG S, ECONOMOU J T, TSOURDOS A. Indirect engine sizing via distributed hybrid-electric unmanned aerial vehicle state-of-charge-based parametrisation criteria[J]. Journal of Aerospace Engineering, 2019, 233(14): 5360-5368
[11] FINGER D F. Comparative performance and benefit assessment of VTOL and CTOL UAVs[C]//65 Deutsche Gesellschaft Für Luft-und Raumfahrt-Lilienthal-Oberth, Brunswick, Germany, 2016
[12] FINGER D F, BRAUN C, BIL C. Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs[J]. CEAS Aeronautical Journal, 2019, 10(3): 827-843
[13] JONG T, SLINGERLAND R. Analysis of the twin-fuselage configuration and its h-cabin derivative[C]//AIAA's 3rd Annual Aviation Technology, Integration, and Operations Forum, 2003: 6811
[14] PERRY A T, ANSELL P J, KERHO M. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[C]//2018 AIAA Aerospace Sciences Meeting, 2018: 2051
[15] 陶福兴, 张恒, 李杰. 一种小型单兵巡飞弹的气动外形设计[J]. 弹箭与制导学报, 2015, 35(6): 111-114 TAO Fuxing, ZHANG Heng, LI Jie. The aerodynamic design of small man-portable loitering munition[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(6): 111-114(in Chinese)
[16] ZAMBONI J, VOS R, EMENETH M, et al. A method for the conceptual design of hybrid electric aircraft[C]//AIAA Scitech 2019 Forum, 2019: 1587
[17] PATTERSON M D, GERMAN B J, MOORE M D. Performance analysis and design of on-demand electric aircraft concepts[C]//12th AIAA Aviation Technology, Integration and Operations Conference, 2012: 5474
[18] AKTAS Y O, OZDEMIR U, DERELI Y, et al. Rapid prototyping of a fixed-wing VTOL UAV for design testing[J]. Journal of Intelligent & Robotic Systems, 2016, 84(1/2/3/4): 639-664
[19] BARUFALD G, MORALES M, SILVA R G. Energy optimal climb performance of electric aircraft[C]//AIAA Scitech 2019 Forum, 2019: 0830